洛谷 P2312 解方程
首先,可以确定的是这题的做法就是暴力枚举x,然后去计算方程左边与右边是否相等。
但是noip的D2T3怎么会真的这么简单呢?卡常卡的真是熟练 你需要一些优化方法。
首先可以用秦九韶公式优化一下方程左边的计算方法:
左边=(((..(a[n]*x)+a[n-1])*x+..+a[1])*x+a[0]
然后我就试着直接去算:
#include<cstdio>
typedef long long LL;
LL a[110],ans[1001000];
LL n,m,aa;
int main()
{
LL i,j;
scanf("%lld%lld",&n,&m);
for(i=0;i<=n;i++)
scanf("%lld",&a[i]);
for(i=n;i>=1;i--)
for(j=1;j<=m;j++)
{
ans[j]+=a[i];
ans[j]*=j;
}
for(i=1;i<=m;i++)
ans[i]+=a[0];
for(i=1;i<=m;i++)
if(ans[i]==0)
aa++;
printf("%lld\n",aa);
for(i=1;i<=m;i++)
if(ans[i]==0)
printf("%lld\n",i);
return 0;
}
然后就Wa(30)掉了...没看清数据范围(ai最长有10000位,而不是最大10000)
也许你会想到高精度运算,但是很容易发现,这题的数据范围太大,直接高精度暴力算太慢。
此时有一个小trick:对于每个a[n],读入的时候对某一些大质数取模。对于每个枚举出的x,就用取模过的a[i]去算。如果用对好几组对不同质数取模得到的a[i]算都能得到0,那么就认为x是合法的。
直觉上可能觉得很容易被卡掉?但事实上一点也不容易被卡....好像还是正解..
那么对于负的a[i]怎么去取模呢?很简单,读入的时候看一下符号位,然后按照正数的方式取模(每读入一位将当前余数乘10再加当前位再取模)。处理完整个数后,如果记录的符号位是负数,那么就将余数变为模数-余数。
然后我去交...然后就T(70)掉了...还是太慢。(而且O2都救不了我...)
//#pragma GCC optimize(2)
#include<cstdio>
#include<cstring>
typedef long long LL;
LL a[5][110],ans[5][1001000];
LL prime[]={179424629,179424667,179424671,179424673,179424691};
LL pnum=5,n,m,aa;
char c;
bool nok[1010000];
int main()
{
//freopen("testdata.in","r",stdin);
//freopen("testdata.ss","w",stdout);
LL i,j,i1,fl,sl,p;
scanf("%lld%lld",&n,&m);
c=getchar();
for(i=0;i<=n;i++)
{
while(!((c>='0'&&c<='9')||c=='-')) c=getchar();
if(c=='-')
fl=1,c=getchar();
else
fl=0;
for(j=0;j<pnum;j++)
{
for(i1=fl;c>='0'&&c<='9';i1++)
{
a[j][i]=(a[j][i]*10+c-'0');
while(a[j][i]>=prime[j]) a[j][i]-=prime[j];
//ans[j][i]-=prime[j]
c=getchar();
}
if(fl) a[j][i]=prime[j]-a[j][i];
}
}
for(p=0;p<pnum;p++)
{
for(j=1;j<=m;j++)
if(!nok[j])
for(i=n;i>=1;i--)
{
ans[p][j]=(ans[p][j]+a[p][i])*j%prime[p];
}
for(j=1;j<=m;j++)
if(!nok[j])
{
ans[p][j]+=a[p][0];
while(ans[p][j]>=prime[p]) ans[p][j]-=prime[p];
}
for(j=1;j<=m;j++)
if(ans[p][j]!=0)
nok[j]=1;
}
for(i=1;i<=m;i++)
if(!nok[i])
aa++;
printf("%lld\n",aa);
for(i=1;i<=m;i++)
if(!nok[i])
printf("%lld\n",i);
return 0;
}
卡了很久的常之后,我放弃了,去看了题解。
原来这个算法是可以接着优化的:http://www.cnblogs.com/NaVi-Awson/p/7566889.html
根据的就是:f(x)≡0(modp),则f(x+p)≡0(modp)
这样子可以快速过滤掉一些m。(怎么觉得是卡常呢...)
然后,我又去交..又T(70)了..
原因:质数选的太大,这样是不能筛掉什么m的
#pragma GCC optimize(2)
#include<cstdio>
#include<cstring>
typedef long long LL;
LL a[5][110],ans[5][1001000];
LL prime[]={179424629,179424667,179424671,179424673,179424691};
LL pnum=5,n,m,aa;
char c;
bool nok[1010000];
int main()
{
//freopen("testdata.in","r",stdin);
//freopen("testdata.ss","w",stdout);
LL i,j,i1,fl,sl,p,k;
scanf("%lld%lld",&n,&m);
c=getchar();
for(i=0;i<=n;i++)
{
while(!((c>='0'&&c<='9')||c=='-')) c=getchar();
if(c=='-')
fl=1,c=getchar();
else
fl=0;
for(j=0;j<pnum;j++)
{
for(i1=fl;c>='0'&&c<='9';i1++)
{
a[j][i]=(a[j][i]*10+c-'0');
while(a[j][i]>=prime[j]) a[j][i]-=prime[j];
//ans[j][i]-=prime[j]
c=getchar();
}
if(fl) a[j][i]=prime[j]-a[j][i];
}
}
for(p=0;p<pnum;p++)
{
for(j=1;j<=m;j++)
if(!nok[j])
{
for(i=n;i>=1;i--)
ans[p][j]=(ans[p][j]+a[p][i])*j%prime[p];
ans[p][j]+=a[p][0];
while(ans[p][j]>=prime[p]) ans[p][j]-=prime[p];
if(ans[p][j]!=0)
for(k=j;k<=m;k+=prime[p])
nok[k]=1;
}
}
for(i=1;i<=m;i++)
if(!nok[i])
aa++;
printf("%lld\n",aa);
for(i=1;i<=m;i++)
if(!nok[i])
printf("%lld\n",i);
return 0;
}
改进:可以用比较小的质数筛掉大部分m,然后用大质数筛掉剩下(也许存在的)不合法的m。
AC代码:
//#pragma GCC optimize(2)
#include<cstdio>
#include<cstring>
typedef long long LL;
LL a[5][110],ans[5][1001000];
LL prime[]={81799,81817,179424671,179424673,179424691};
LL pnum=5,n,m,aa;
char s[10100];
bool nok[1010000];
int main()
{
//freopen("testdata.in","r",stdin);
//freopen("testdata.ss","w",stdout);
LL i,j,i1,fl,sl,p,k;
scanf("%lld%lld",&n,&m);
// c=getchar();
// for(i=0;i<=n;i++)
// {
// while(!((c>='0'&&c<='9')||c=='-')) c=getchar();
// if(c=='-')
// fl=1,c=getchar();
// else
// fl=0;
// for(j=0;j<pnum;j++)
// {
// for(i1=fl;c>='0'&&c<='9';i1++)
// {
// a[j][i]=(a[j][i]*10+c-'0');
// while(a[j][i]>=prime[j]) a[j][i]-=prime[j];
// //ans[j][i]-=prime[j]
// c=getchar();
// }
// if(fl) a[j][i]=prime[j]-a[j][i];
// }
// }
for(i=0;i<=n;i++)
{
scanf("%s",s);
if(s[0]=='-')
fl=1;
else
fl=0;
sl=strlen(s);
for(j=0;j<pnum;j++)
{
for(i1=fl;i1<sl;i1++)
a[j][i]=(a[j][i]*10+s[i1]-'0')%prime[j];
if(fl) a[j][i]=prime[j]-a[j][i];
}
}
for(p=0;p<pnum;p++)
{
for(j=1;j<=m;j++)
if(!nok[j])
{
for(i=n;i>=1;i--)
ans[p][j]=(ans[p][j]+a[p][i])*j%prime[p];
ans[p][j]+=a[p][0];
while(ans[p][j]>=prime[p]) ans[p][j]-=prime[p];
if(ans[p][j]!=0)
for(k=j;k<=m;k+=prime[p])
nok[k]=1;
}
}
for(i=1;i<=m;i++)
if(!nok[i])
aa++;
printf("%lld\n",aa);
for(i=1;i<=m;i++)
if(!nok[i])
printf("%lld\n",i);
return 0;
}
洛谷 P2312 解方程的更多相关文章
- 洛谷P2312 解方程题解
洛谷P2312 解方程题解 题目描述 已知多项式方程: \[a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\] 求这个方程在 \([1,m]\) 内的整数解(\(n\) 和 \(m\) ...
- 洛谷 P2312 解方程 解题报告
P2312 解方程 题目描述 已知多项式方程: \(a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\)求这个方程在 \([1,m]\) 内的整数解(\(n\) 和 \(m\) 均为正整 ...
- 洛谷 P2312 解方程 题解
P2312 解方程 题目描述 已知多项式方程: \[a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\] 求这个方程在 [1,m][1,m] 内的整数解(\(n\) 和 \(m\) 均为 ...
- [NOIP2014] 提高组 洛谷P2312 解方程
题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, m ] 内的整数解(n 和m 均为正整数) 输入输出格式 输入格式: 输入文件名为equation .i ...
- 2018.11.02 洛谷P2312 解方程(数论)
传送门 直接做肯定会TLETLETLE. 于是考验乱搞能力的时候到了. 我们随便选几个质数来checkcheckcheck合法解,如果一个数无论怎么checkcheckcheck都是合法的那么就有很大 ...
- 洛谷P2312 解方程 [noip2014] 数论
正解:数论 解题报告: 这儿是,传送门qwq 又是很妙的一道题呢,专门用来对付我这种思维僵化了的傻逼的QAQ 首先看题目的数据范围,发现a<=1010000,很大的一个数据范围了呢,那这题肯定不 ...
- 洛谷P2312解方程
传送门 思路分析 怎么求解呢? 其实我们可以把左边的式子当成一个算式来计算,从1到 $ m $ 枚举,只要结果是0,那么当前枚举到的值就是这个等式的解了.可以通过编写一个 $ bool $ 函数来判断 ...
- 洛谷P2312解方程题解
题目 暴力能得\(30\),正解需要其他的算法操作,算法操作就是用秦九韶算法来优化. 秦九韶算法就是求多项式的值时,首先计算最内层括号内一次多项式的值,然后由内向外逐层计算一次多项式的值,然后就将求\ ...
- 洛谷P2312 解方程(暴力)
题意 题目链接 Sol 出这种题会被婊死的吧... 首先不难想到暴力判断,然后发现连读入都是个问题. 对于\(a[i]\)取模之后再判断就行了.注意判断可能会出现误差,可以多找几个模数 #includ ...
随机推荐
- HDU 4279 Number(找规律)
Number Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...
- Hive中行列转换
1.演示多列转为单行 数据文件及内容: student.txt xiaoming|english|92.0 xiaoming|chinese|98.0 xiaoming|math|89.5 huahu ...
- Asp.net MVC 简单分页 自做简单分页
Asp.net MVC 简单分页: public static string Pager(int page,int pageSize,int total) { ...
- Selenium系列之--01 简介【转】
1.selenium 工具组件 1.1 selenium2,也称为selenium webdriver.webdriver原来是另一个自动化测试工具,后与selenium 合并了.webdriver直 ...
- 多媒体开发之---h.264 rtsp网络流测试流
rtsp://218.204.223.237:554/live/1/66251FC11353191F/e7ooqwcfbqjoo80j.sdp 珠海拱北
- ExtJs里表格自动显隐滚动条
ExtJs里面,layout:'border'这种布局应该很常用,但我用的时候,因为不熟,走了一些弯路.比如说,一个页面,大体布局是这样的: 上:查询输入框 中+下:查询结果(表格,底部有分页控件) ...
- 内存转储文件 Memory.dmp
https://baike.sogou.com/v63435711.htm?fromTitle=内存转存文件 内存转储是用于系统崩溃时,将内存中的数据转储保存在转储文件中,供给有关人员进行排错分析用途 ...
- 总结文件操作函数(二)-C语言
格式化读写: #include <stdio.h> int printf(const char *format, ...); //相当于fprintf( ...
- HDU1754 —— I Hate It 线段树 单点修改及区间最大值
题目链接:https://vjudge.net/problem/HDU-1754 很多学校流行一种比较的习惯.老师们很喜欢询问,从某某到某某当中,分数最高的是多少. 这让很多学生很反感. 不管你喜不喜 ...
- Javascript 解析字符串生成 XML DOM 对象。
Javascript 接收字符串生成 XML DOM 对象.实测对 Firefox .IE6 有效.可用于解析 ajax 的服务器响应结果,也可用于解析自定义字符串.1. [代码]函数 ppt模 ...