有向图连通分量SCC
设
1) S为G的子图,S连通,
2) 如果有S'也是G的连通子图,且S是S'的子图,可推出S = S',
则称S是G的极大连通子图。
极小连通子图正好相反,极小就是不能再小,再多小一点就会不连通或点不足。因此,极小连通子图就是:
设
1) S为G的子图,S连通,
2) 如果有S'也是G的连通子图,S'包含G的所有顶点,且S'是S的子图,可推出S' = S,
则称S是G的级小连通子图。
注:这个定义和pinejeely给出的等价。这里给出的定义比较容易验证。
Kosaraju算法:先dfs,得到最后完成时间f,再求反图,按f递减的方向对反图再dfs一次。
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iomanip>
#include <set>
#include <map>
#include <vector>
#include <queue>
using namespace std;
#define N 1000
int head[N], headt[N], cnt;
struct node
{
int next, to;
}edge[N * ], edget[N * ]; void addedge(int from, int to)//G_T
{
cnt++;
edge[cnt].next = head[from];
edge[cnt].to = to;
head[from] = cnt;
//得到反图
edget[cnt].next = headt[to];
edget[cnt].to = from;
headt[to] = cnt;
}
int f[N];//finishtime
int d[N];//discovertime
int color[N];//init 0 denote white; 1 denote gray discover; 2 denote black finish
int time;
int belong[N];//which scc
int cur;//current scc
void dfs_visit(int x)
{
color[x] = ;
d[x] = ++time;
int i, j;
for (i = head[x]; i; i = edge[i].next)
{
j = edge[i].to;
if (!color[j])
{
dfs_visit(j);
}
}
//color[x] = 2;
f[x] = ++time;
} void dfs_visit_t(int x)
{
color[x] = ;
//d[x] = ++time;
int i, j;
for (i = headt[x]; i; i = edget[i].next)
{
j = edget[i].to;
if (!color[j])
{
dfs_visit_t(j);
}
}
//color[x] = 2;
//f[x] = ++time;
belong[x] = cur;
} bool cmp(const int &a, const int &b)
{
return a > b;
} map<int, int, greater<int> > mp;//使用map对f[i]进行从大到小排序
map<int, int>::iterator it; void init()
{
cnt = cur = ;
time = -;
memset(head, , sizeof(head));
memset(f, , sizeof(f));
memset(d, , sizeof(d));
memset(color, , sizeof(color));
memset(belong, , sizeof(belong));
mp.clear();
} int main()
{
int n, m, u, v, i;
while (~scanf("%d%d", &n, &m))
{
init();
for (i = ; i < m; i++)
{
scanf("%d%d", &u, &v);
addedge(u, v);
}
for (i = ; i <= n; i++)//得到f
if (!color[i])
dfs_visit(i);
//sort(f, f + n, cmp);
for (i = ; i <=n; i++)//对f排序
mp[f[i]] = i;
memset(color, , sizeof(color));
for (it = mp.begin(); it != mp.end(); ++it)//对反图进行dfs
{
if (!color[it->second])
{
dfs_visit_t(it->second);
cur++;
}
}
for (i = ; i <=n; i++)
printf("%d ", belong[i]);
}
return ;
}
Tarjan算法只需一次dfs,而且不用求反图,dfs找最早祖先点(最先被发现)也就是寻找B边。
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iomanip>
#include <set>
#include <map>
#include <vector>
#include <queue>
#include <stack>
#define INF 0x7fffffff
using namespace std;
#define N 1000 stack<int> s;
int head[N], cnt;
struct node
{
int next, to;
}edge[N * ]; void addedge(int from, int to)
{
cnt++;
edge[cnt].next = head[from];
edge[cnt].to = to;
head[from] = cnt;
}
//int f[N];//finishtime
int pre[N];//discovertime
//int color[N];//init 0 denote white; 1 denote gray discover; 2 denote black finish
int time;
int id[N];//which scc
int low[N];//
int cur;//current scc
void dfs_visit(int x)
{
low[x] = pre[x] = ++time;
s.push(x);
int i, j;
for (i = head[x]; i; i = edge[i].next)
{
j = edge[i].to;
if (!pre[j])
{
dfs_visit(j);
}
if (low[j] < low[x])//找最小的low[x],即是否存在后向边(B边)
low[x] = low[j];
}
if (low[x] == pre[x])//找到了一个scc
{
do
{
i = s.top();
s.pop();
low[i] = INF;
id[i] = cur;
}while (i != x);
cur++;
}
} void init()
{
cnt = cur = ;
time = ;
memset(head, , sizeof(head));
memset(pre, , sizeof(pre));
memset(low, , sizeof(low));
memset(id, , sizeof(id));
while (!s.empty())
s.pop();
} int main()
{
int n, m, u, v, i;
while (~scanf("%d%d", &n, &m))
{
init();
for (i = ; i < m; i++)
{
scanf("%d%d", &u, &v);
addedge(u, v);
}
for (i = ; i <= n; i++)
if (!pre[i])
dfs_visit(i);
for (i = ; i <=n; i++)
printf("%d ", id[i]);
}
return ;
}
Gabow算法:思路与tarjan思路一样,但是用一个stack替代了low数组,使得交换次数减小
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iomanip>
#include <set>
#include <map>
#include <vector>
#include <queue>
#include <stack>
#define INF 0x7fffffff
using namespace std;
#define N 1000 stack<int> s;
stack<int> p;
int head[N], cnt;
struct node
{
int next, to;
}edge[N * ]; void addedge(int from, int to)
{
cnt++;
edge[cnt].next = head[from];
edge[cnt].to = to;
head[from] = cnt;
}
//int f[N];//finishtime
int pre[N];//discovertime
//int color[N];//init 0 denote white; 1 denote gray discover; 2 denote black finish
int time;
int id[N];//which scc
int low[N];//
int cur;//current scc
void dfs_visit(int x)
{
low[x] = pre[x] = ++time;
s.push(x);
p.push(x);
int i, j;
for (i = head[x]; i; i = edge[i].next)
{
j = edge[i].to;
if (!pre[j])
dfs_visit(j);
if (!id[j])//该点未在已求的scc中
while (pre[j] < pre[p.top()])存在后向边,出栈
p.pop();
}
if (p.top() == x)//找到一个scc
{
p.pop();
do
{
i = s.top();
id[i] = cur;
s.pop();
}while (i != x);
cur++;
}
} void init()
{
cnt = cur = ;
time = ;
memset(head, , sizeof(head));
memset(pre, , sizeof(pre));
memset(low, , sizeof(low));
memset(id, , sizeof(id));
while (!s.empty())
s.pop();
while (!p.empty())
p.pop();
} int main()
{
int n, m, u, v, i;
while (~scanf("%d%d", &n, &m))
{
init();
for (i = ; i < m; i++)
{
scanf("%d%d", &u, &v);
addedge(u, v);
}
for (i = ; i <= n; i++)
if (!pre[i])
dfs_visit(i);
for (i = ; i <=n; i++)
printf("%d ", id[i]);
}
return ;
}
有向图连通分量SCC的更多相关文章
- HDU 1269 -- 迷宫城堡【有向图求SCC的数目 && 模板】
迷宫城堡 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submi ...
- [Tarjan系列] Tarjan算法与有向图的SCC
前面的文章介绍了如何用Tarjan算法计算无向图中的e-DCC和v-DCC以及如何缩点. 本篇文章资料参考:李煜东<算法竞赛进阶指南> 这一篇我们讲如何用Tarjan算法求有向图的SCC( ...
- 洛谷 P2746 [USACO5.3]校园网Network of Schools (Tarjan,SCC缩点,DAG性质)
P2746 [USACO5.3]校园网Network of Schools https://www.luogu.org/problem/P2746 题目描述 一些学校连入一个电脑网络.那些学校已订立了 ...
- [Tarjan系列] Tarjan算法求无向图的桥和割点
RobertTarjan真的是一个传说级的大人物. 他发明的LCT,SplayTree这些数据结构真的给我带来了诸多便利,各种动态图论题都可以用LCT解决. 而且,Tarjan并不只发明了LCT,他对 ...
- COGS 2396 2397 [HZOI 2015]有标号的强连通图计数
题意:求n个点有向图其中SCC是一个的方案数 考虑求出若干个不连通的每个连通块都是SCC方案数然后再怎么做一做.(但是这里不能用Ln,因为推不出来) 设$f_n$为答案, $g_n$为n个点的有向图, ...
- 【洛谷P3275】糖果
题目大意:维护 M 个差分约束关系,问是否可以满足所有约束,如果满足输出一组解.\(N<=1e5\) 题解:差分约束模型可以通过构建一张有向图来求解.是否满足所有约束可以利用 spfa 进行判断 ...
- POJ - 3177 Redundant Paths (边双连通缩点)
题意:在一张图中最少可以添加几条边,使其中任意两点间都有两条不重复的路径(路径中任意一条边都不同). 分析:问题就是最少添加几条边,使其成为边双连通图.可以先将图中所有边双连通分量缩点,之后得到的就是 ...
- POJ - 2942 Knights of the Round Table (点双联通分量+二分图判定)
题意:有N个人要参加会议,围圈而坐,需要举手表决,所以每次会议都必须是奇数个人参加.有M对人互相讨厌,他们的座位不能相邻.问有多少人任意一场会议都不能出席. 分析:给出的M条关系是讨厌,将每个人视作点 ...
- [Tarjan系列] 无向图e-DCC和v-DCC的缩点
上一篇讲了如何应用Tarjan算法求出e-DCC和v-DCC. 那么这一篇就是e-DCC和v-DCC的应用之一:缩点. 先讲e-DCC的缩点. 我们把每一个e-DCC都看成一个节点,把所有桥边(x,y ...
随机推荐
- bzoj 4069: [Apio2015]巴厘岛的雕塑【dp】
居然要对不同的数据写不同的dp= = 首先记得开long long,<<的时候要写成1ll<<bt 根据or的性质,总体思路是从大到小枚举答案的每一位,看是否能为0. 首先对于 ...
- [App Store Connect帮助]七、在 App Store 上发行(5)手动发布版
如果在您提交您的 App 以供审核时选择手动发布某个版本,您可以在它被批准且状态更改为“等待开发者发布”后发布该版本.如果您的某个 App 处于“等待开发者发布”状态超过 30 天,您会收到来自 Ap ...
- [hdu1695] GCD【莫比乌斯反演】
传送门:http://acm.hdu.edu.cn/showproblem.php?pid=1695 先把题目转化为求一个数在区间[1, b / k],另一个数在区间[1, d / k]时,这两个数互 ...
- 暴力(判凸四边形) FZOJ 2148 Moon Game
题目传送门 题意:给了n个点的坐标,问能有几个凸四边形 分析:数据规模小,直接暴力枚举,每次四个点判断是否会是凹四边形,条件是有一个点在另外三个点的内部,那么问题转换成判断一个点d是否在三角形abc内 ...
- 018 [工具软件]截图贴图注释 Snipaste
Snipaste 是一个截图贴图工具,绿色免费.官方主页:https://zh.snipaste.com/. 三大功能: 1.截图,可以自动识别窗口的各元素,可以精准到像素调整截图区域大小. 2.贴图 ...
- 1043 幸运号码 数位DP
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1043 设dp[i][j]表示前i位数中,i位数的和为j时的所有情况. 转 ...
- 利用正则将xml数据解析为数组
function xml_to_array( $xml ) { $reg = '/<(\w+)[^>]*>([\x00-\xFF]*)<\/\1>/'; if(preg_ ...
- web+ admin template,spa管理应用后台,easyui后台正式发布
演示地址:http://admintemplate.webplus.org.cn/ v1.0 (2016/7/27) 扁平化风格 全屏支持 后台管理不使用iframe,全ajax开发 权限管理 商品管 ...
- Effective Java读书笔记完结啦
Effective Java是一本经典的书, 很实用的Java进阶读物, 提供了各个方面的best practices. 最近终于做完了Effective Java的读书笔记, 发布出来与大家共享. ...
- Java开发笔记(九十三)深入理解字节缓存
前面介绍了文件通道的读写操作,其中用到字节缓存ByteBuffer,它是位于通道内部的存储空间,也是通道唯一可用的存储形式.ByteBuffer有两种构建方式,一种是调用静态方法wrap,根据输入的字 ...