Fantasia

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)

Problem Description
Professor Zhang has an undirected graph G with n vertices and m edges. Each vertex is attached with a weight wi. Let Gi be the graph after deleting the i-th vertex from graph G. Professor Zhang wants to find the weight of G1,G2,...,Gn.

The weight of a graph G is defined as follows:

1. If G is connected, then the weight of G is the product of the weight of each vertex in G.
2. Otherwise, the weight of G is the sum of the weight of all the connected components of G.

A connected component of an undirected graph G is a subgraph in which any two vertices are connected to each other by paths, and which is connected to no additional vertices in G.

 
Input
There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:

The first line contains two integers n and m (2≤n≤105,1≤m≤2×105) -- the number of vertices and the number of edges.

The second line contains n integers w1,w2,...,wn (1≤wi≤109), denoting the weight of each vertex.

In the next m lines, each contains two integers xi and yi (1≤xi,yi≤n,xi≠yi), denoting an undirected edge.

There are at most 1000 test cases and ∑n,∑m≤1.5×106.

 
Output
For each test case, output an integer S=(∑i=1ni⋅zi) mod (109+7), where zi is the weight of Gi.
 
Sample Input
1
3 2
1 2 3
1 2
2 3
 
Sample Output
20
 
题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=5739
 
题目描述:
  有n个节点,每个节点有个值,然后m条边构成可能不止一张张图,每张图的价值是每个节点的值的乘积,然后总的价值就是所有图的价值加起来。
现在要分别删除每个点,G1就是代表的删除编号为1的节点,所有图加起来的价值。 然后问你1*G[2] + 2*G[2] + ……+n*G[n]. 最后的值膜一个1e9+7。
 
题解:
  这个题很显然就是求割点,如果不是割点,就直接删除这个点就好了,如果是割点就复杂一点,就需要将该点的子树中最多能够访问到该点的子树的值给处理出来。然后把子树分开,另外处理就好了,还是看代码分析吧。道理是这么说,但是中途写错了好多东西TAT,对着数据改到现在...唉....
 
代码:  
 #include<cstdio>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<vector>
#include<stack>
#include<cstring>
#include<queue>
#include<set>
#include<string>
#include<map>
#define inf 9223372036854775807
#define INF 9e7+5
#define PI acos(-1)
using namespace std;
typedef long long ll;
typedef double db;
const int maxn = 1e5 + 5;
const int mod = 1e9 + 7;
const db eps = 1e-9;
ll va[maxn], w[maxn], Sum, ans[maxn];
int pre[maxn], dfs_tim, tot, n, m, low[maxn], t, vep[maxn];
bool vis[maxn];
vector<int> G[maxn]; void init() {
memset(vis, false, sizeof(vis));
memset(pre, 0, sizeof(pre));
Sum = tot = dfs_tim = 0;
for (int i = 1; i <= n; i++) G[i].clear();
}
//快速幂,求逆元用
ll pow_mod(ll a, ll b, ll p) {
ll ret = 1;
while(b) {
if(b & 1) ret = (ret * a) % p;
a = (a * a) % p;
b >>= 1;
}
return ret;
}
//费马小定理求的逆元
ll inv(ll x) {
return pow_mod(x, mod-2, mod);
}
// 先写好,懒得每次模
void add(ll &x, ll y) {
x = x + y;
x = (x + mod) % mod;
}
// 主要是把每张图的价值处理出来
void Find(int x) {
va[x] = w[x];
for (int i = 0; i < G[x].size(); i++) {
int u = G[x][i];
if (vis[u]) continue;
vis[u] = true; Find(u);
va[x] = va[x] * va[u] % mod;
}
} ll dfs(int x, int fa, int root) { //当前节点,父节点和根节点
low[x] = pre[x] = ++dfs_tim; //pre数组记录访问的时间
ans[x] = inv(w[x]); //删除此时访问的节点
int cld = 0; ll sum = 0, res = w[x], pro = 1;
for (int i = 0; i < G[x].size(); i++) {
int u = G[x][i];
if (!pre[u]) {
cld++;
ll tmp = dfs(u, x, root); //tmp返回的是对于u这颗子树的价值
low[x] = min(low[x], low[u]); //更新x节点所能访问的最早的祖先
if (low[u] >= pre[x]) { //如果u这颗子树所能访问的是x,那么说明x节点被删除,u这颗子树会被分开
add(sum, tmp); //sum表示的是x节点被删除后,x会被分开的子树的价值之和
ans[x] = ans[x] * inv(tmp) % mod; //和上面删除节点一样,表示将这颗子树删除
}
res = res * tmp % mod; //求子树的价值
}
else if (u != fa) low[x] = min(low[x], pre[u]); //对于访问比当前节点早的节点,更新能访问的最早节点
} //tt表示的是除了这幅图,其它图的价值之和
ll tt = (Sum - va[root] + mod) % mod; //va[roor]*ans[x]中ans[x]已经是逆元了,所以这句话
ans[x] = va[root] * ans[x] % mod; //表示的是将x节点和会分开的子树 删除后该图的值
if (fa == -1 && ans[x] == 1) ans[x] = 0; //对于一张图,如果他的子节点全部被删除了,我们
    //求到的ans[x]是1,但事实上应 该是0,所以
//需要特判一下,比如这样一张图 1 - 2, 1 - 3.
add(ans[x], tt); add(ans[x], sum); //将其他图和删除的子树加起来
if (fa == -1) {
if (cld == 1) { //对于最开始的祖先,如果他只有一个儿
//子,那么他不是割点,学割点应该都学过QAQ
ans[x] = va[root] * inv(w[x]) % mod;
add(ans[x], tt);
}
else if (G[x].size() == 0) {
ans[x] = tt; //如果这是一个孤立点,删除后就直接是其他图的值
}
}
return res;
} void solve() {
cin >> n >> m;
init();
for (int i = 1; i <= n; i++) scanf("%I64d", &w[i]);
for (int i = 1; i <= m; i++) {
int u, v; scanf("%d%d", &u, &v);
G[u].push_back(v);
G[v].push_back(u);
}
for (int i = 1; i <= n; i++) {
if (vis[i]) continue;
vis[i] = true;
vep[++tot] = i; Find(i); //vep数组用来存每次要访问的图的开始节点
add(Sum, va[i]); //所有图的总价值,va[i]就代表了这张图的总价值
}
for (int i = 1; i <= tot; i++) {
dfs(vep[i], -1, vep[i]); //-1位置代表的父节点,对于最开始的点的父亲设为-1
}
ll pri = 0;
for (ll i = 1; i <= n; i++) {
add(pri, i*ans[i]%mod); //求出最后的值
}
cout << pri << endl;
}
int main() {
//cin.sync_with_stdio(false);
// freopen("tt.txt", "r", stdin);
//freopen("hh.txt", "w", stdout);
cin >> t; while (t--)
solve();
return 0;
}

  

hdu5739Fantasia(多校第二场1006) 割点+逆元的更多相关文章

  1. hdu 6050: Funny Function (2017 多校第二场 1006) 【找规律】

    题目链接 暴力打个表找下规律就好了,比赛时看出规律来了倒是,然而看这道题看得太晚了,而且高中的那些数列相关的技巧生疏了好多,然后推公式就比较慢..其实还是自身菜啊.. 公式是 #include< ...

  2. 2019牛客多校第二场 A Eddy Walker(概率推公式)

    2019牛客多校第二场 A Eddy Walker(概率推公式) 传送门:https://ac.nowcoder.com/acm/contest/882/A 题意: 给你一个长度为n的环,标号从0~n ...

  3. 2015 多校赛 第二场 1006 (hdu 5305)

    Problem Description There are n people and m pairs of friends. For every pair of friends, they can c ...

  4. 2018 Multi-University Training Contest 2 杭电多校第二场

    开始逐渐习惯被多校虐orz  菜是原罪 1004  Game    (hdoj 6312) 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6312 虽然披着 ...

  5. 2014多校第二场1011 || HDU 4882 ZCC Loves Codefires (贪心)

    题目链接 题意 : 给出n个问题,每个问题有两个参数,一个ei(所要耗费的时间),一个ki(能得到的score).每道问题需要耗费:(当前耗费的时间)*ki,问怎样组合问题的处理顺序可以使得耗费达到最 ...

  6. HDU 4612 (13年多校第二场1002)无向图缩点,有重边

    这道题是多校的题,比赛的时候是一道纷纷水过的板刷题. 题意:给你一些无向边,只加一条边,使该图的桥最少,然后输出最少的桥. 思路:当时大致想到思路了,就是缩点之后找出最长的链,然后用总的桥数减去链上的 ...

  7. 2019牛客多校第二场H-Second Large Rectangle

    Second Large Rectangle 题目传送门 解题思路 先求出每个点上的高,再利用单调栈分别求出每个点左右两边第一个高小于自己的位置,从而而得出最后一个大于等于自己的位置,进而求出自己的位 ...

  8. 2019年牛客多校第二场 H题Second Large Rectangle

    题目链接 传送门 题意 求在\(n\times m\)的\(01\)子矩阵中找出面积第二大的内部全是\(1\)的子矩阵的面积大小. 思路 处理出每个位置往左连续有多少个\(1\),然后对每一列跑单调栈 ...

  9. 第二大矩阵面积--(stack)牛客多校第二场-- Second Large Rectangle

    题意: 给你一幅图,问你第二大矩形面积是多少. 思路: 直接一行行跑stack求最大矩阵面积的经典算法,不断更新第二大矩形面积,注意第二大矩形可能在第一大矩形里面. #define IOS ios_b ...

随机推荐

  1. CoreOS,CoreOS,一款 Linux 容器发行版

    CoreOS,一款最新的 Linux 发行版本,支持自动升级内核软件,提供各集群间配置的完全控制. 关于使用哪个版本的 Linux 服务器系统的争论,常常是以这样的话题开始的: 你是喜欢基于 Red ...

  2. Java多线程:线程状态以及wait(), notify(), notifyAll()

    一. 线程状态类型1. 新建状态(New):新创建了一个线程对象.2. 就绪状态(Runnable):线程对象创建后,其他线程调用了该对象的start()方法.该状态的线程位于可运行线程池中,变得可运 ...

  3. HBase之七:事务和并发控制机制原理

    作为一款优秀的非内存数据库,HBase和传统数据库一样提供了事务的概念,只是HBase的事务是行级事务,可以保证行级数据的原子性.一致性.隔离性以及持久性,即通常所说的ACID特性.为了实现事务特性, ...

  4. js dom element 属性整理(原创)

    最近去几家公司面试,发现大多数时候面试的内容考的都是原生的js语法和属性,所以我决心整理一下原生的dom元素的属性. 首先,我我们需要获取一个element元素 <li id="2&q ...

  5. Sharepoint中WebPart開發時註意的問題

    1. 怎麼樣在WebPart中使用Sharepoint控件? 要在webpart中使用sharepoint控件必須先引用Microsoft.SharePoint.WebControls命名空間,如你現 ...

  6. B. Simple Molecules

    time limit per test 1 second memory limit per test 256 megabytes input standard input output standar ...

  7. A. Bus to Udayland

    time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...

  8. Ruby module ---模块,组件

    module 的主要目的是把不同的方法和常量分别放进不同的命名空间. module 的命名方式跟类一样首字母大写,多个单词不用下划线. 如:CircleArea module 语法 module Mo ...

  9. 关于Android ListView组件中android:drawSelectorOnTop含义(转载)

    转自:http://yangguangfu.iteye.com/blog/902559 When set to true, the selector will be drawn over the se ...

  10. 【WIP】swift3的timer的用法

    创建: 2017/10/14   更新: 2017/10/14 标题加上[WIP],补充创建时间     回家再写