Description

A group of researchers are designing an experiment to test the IQ of a monkey. They will hang a banana at the roof of a building, and at the mean time, provide the monkey with some blocks. If the monkey is clever enough, it shall be able to reach the banana by placing one block on the top another to build a tower and climb up to get its favorite food.

The researchers have n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi, yi, zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height.

They want to make sure that the tallest tower possible by stacking blocks can reach the roof. The problem is that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block because there has to be some space for the monkey to step on. This meant, for example, that blocks oriented to have equal-sized bases couldn't be stacked.

Your job is to write a program that determines the height of the tallest tower the monkey can build with a given set of blocks.

Input

The input file will contain one or more test cases. The first line of each test case contains an integer n, 
representing the number of different blocks in the following data set. The maximum value for n is 30. 
Each of the next n lines contains three integers representing the values xi, yi and zi. 
Input is terminated by a value of zero (0) for n. 

Output

For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format "Case case: maximum height = height". 

Sample Input

1
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0

Sample Output

Case 1: maximum height = 40
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342

经典的dp问题,刚开始接触有点难度

给出n种类型的长方体石块,给出每种的长宽高,每种石块有三种摆放方式,数量不限,可以累加着往上放,问最多能放多高

但是有个限定条件,长和宽必须均小于下面石块的长和宽才能放上去

转换成dp模型,就是dp[i]表示放置到第i个石块最高的高度,上面石块边长必须严格小于下面石块

 #include<cstdio>
#include<algorithm>
using namespace std;
struct stu
{
int l,w,h;
}st[];
bool cmp(stu a,stu b) //从顶往下判断所以从小往大排序
{
if(a.l != b.l)
return a.l < b.l;
else
return a.w < b.w;
}
int main()
{
int k=;
int dp[]; //dp[i]表示从顶开始到第i个木块的高度
int n,a,b,c,max0,num;
while(scanf("%d",&n) && n)
{
int i,j;
num=;
for(i = ; i <= n ; i++)
{
scanf("%d %d %d",&a,&b,&c);
st[num].l=a,st[num].w=b,st[num++].h=c; //每个木块有三种放法
st[num].l=a,st[num].w=c,st[num++].h=b;
st[num].l=b,st[num].w=a,st[num++].h=c;
st[num].l=b,st[num].w=c,st[num++].h=a;
st[num].l=c,st[num].w=a,st[num++].h=b;
st[num].l=c,st[num].w=b,st[num++].h=a;
}
sort(st,st+num,cmp);
for(i = ; i < num ; i++)
{
dp[i]=st[i].h;
}
for(i = ; i < num ; i++)
{
for(j = ; j < i ; j++)
{
if(st[j].l < st[i].l && st[j].w < st[i].w && dp[j]+st[i].h > dp[i])
{
dp[i]=dp[j]+st[i].h;
}
}
}
sort(dp,dp+num);
printf("Case %d: maximum height = ",k++);
printf("%d\n",dp[num-]);
}
return ;
}

杭电 1069 Monkey and Banana的更多相关文章

  1. HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径)

    HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径) Description A group of researchers ar ...

  2. HDU 1069 Monkey and Banana(转换成LIS,做法很值得学习)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1069 Monkey and Banana Time Limit: 2000/1000 MS (Java ...

  3. HDU 1069 Monkey and Banana dp 题解

    HDU 1069 Monkey and Banana 纵有疾风起 题目大意 一堆科学家研究猩猩的智商,给他M种长方体,每种N个.然后,将一个香蕉挂在屋顶,让猩猩通过 叠长方体来够到香蕉. 现在给你M种 ...

  4. 杭电oj 1069 Monkey and Banana 最长递增子序列

    Monkey and Banana Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)To ...

  5. HDU 1069 Monkey and Banana(二维偏序LIS的应用)

    ---恢复内容开始--- Monkey and Banana Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  6. HDU 1069 Monkey and Banana (DP)

    Monkey and Banana Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  7. HDU 1069—— Monkey and Banana——————【dp】

    Monkey and Banana Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  8. hdu 1069 Monkey and Banana

    Monkey and Banana Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  9. HDU 1069 Monkey and Banana(动态规划)

    Monkey and Banana Problem Description A group of researchers are designing an experiment to test the ...

随机推荐

  1. Beta版本冲刺第二天!

    该作业所属课程:https://edu.cnblogs.com/campus/xnsy/SoftwareEngineeringClass2 作业地址:https://edu.cnblogs.com/c ...

  2. android 百度地图

    展示当前位置地图 参考百度定位demo (LocationDemo) 实现此功能,运行发现 BDLocationListener 的onReceiveLocation方法无法执行,原因是 Androi ...

  3. logrotate日志转储

    1 工具目录 ***系统开启selinux,logrotate会不生效*** linux默认会安装logrotate工具,自身的boot.log就是通过它分割转储的. [root@webmaster ...

  4. 清橙A1339. JZPLCM(顾昱洲)

    http://www.tsinsen.com/ViewGProblem.page?gpid=A1339 题解:https://blog.csdn.net/LOI_DQS/article/details ...

  5. linux查找命令(find)

    linux查找命令(find) 命令格式: find [目录] [选项] [选项的条件] 选项: -name:文件名称查找 -size:文件的大小来查找 -perm:文件的权限来查找 ①根据文件的名称 ...

  6. 解题报告:poj 3259 Wormholes(入门spfa判断负环)

    Description While exploring his many farms, Farmer John has discovered a number of amazing wormholes ...

  7. RabbitMQ九:远程过程调用RPC

    定义 RPC(Remote Procedure Call Protocol)——远程过程调用协议:它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议.RPC协议假定某些传输协议 ...

  8. 进程间通信的两种实现方式(IPC)

    进程间通信的两种实现方式(IPC) IPC: iter processing communicate 进程间通信:IPC(iter process communicate)linux free-m 可 ...

  9. ZigBee cc2530芯片学习 error记录(1)

    ZigBee cc2530芯片学习 error记录   Error[e46]: Undefined external "LcdInit" referred in main( xxx ...

  10. js函数中获得当前被点击元素

    问题描述:在html页面中点击<a>或者’按钮‘,进入js中的函数,在js函数中获得被点击那个<a>或‘按钮’元素 解决方法:方法一: html中: <a>标签:& ...