PointNet++是在PointNet上做出了改进,考虑了点云局部特征提取,从而更好地进行点云分类和分割。

先简要说一下PointNet:
PointNet,其本质就是一种网络结构,按一定的规则输入点云数据,经过一层层地计算,得出分类结果或者分割结果。其中比较特殊的地方在于两个转换矩阵(input transform & feature transform)的存在,根据文中所说,这两个转换矩阵可以在深度学习过程中保持点云数据的空间不变性。
根据论文里所说,图中的input transform是一个3*3的矩阵,作为深度学习的一个参数存在。而feature transform由于维数较大(64*64),所以文中采用了正交约束的方法限制这个矩阵,从而使优化可以快速收敛。

PointNet:PointNet Deep Learning on Point Sets for 3D Classification and Segmentation .

简介:PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation-论文解读

PointNet++:PointNet++: Deep Hierarchical Feature Learning onPoint Sets in a Metric Space

简介:PointNet++阅读笔记

注意事项:

输入数据的标准化工作,输入一个梯级表示模型。

从一点开始(可以是密度最高点,也可以随机选取),作为已选集合,使用测地线判断离已选集合最远点,然后更新已选集合,再次添加新的集合最远点,这样不管获得多少个点,都意味着模型的稀疏点表示。随着点集的增加,模型的表示越来越精确。

刘洪森同学对此网络进行了改进,暂时还没有仔细Get他的进展。

三维CNN:收集一些最近的3d卷积网络PointNet++的更多相关文章

  1. 了解1D和3D卷积神经网络 | Keras

    当我们说卷积神经网络(CNN)时,通常是指用于图像分类的2维CNN.但是,现实世界中还使用了其他两种类型的卷积神经网络,即1维CNN和3维CNN.在本指南中,我们将介绍1D和3D CNN及其在现实世界 ...

  2. CVPR2020:点云分析中三维图形卷积网络中可变形核的学习

    CVPR2020:点云分析中三维图形卷积网络中可变形核的学习 Convolution in the Cloud: Learning Deformable Kernels in 3D Graph Con ...

  3. Deeplearning 两层cnn卷积网络详解

    https://blog.csdn.net/u013203733/article/details/79074452 转载地址: https://www.cnblogs.com/sunshineatno ...

  4. 3. CNN卷积网络-反向更新

    1. CNN卷积网络-初识 2. CNN卷积网络-前向传播算法 3. CNN卷积网络-反向更新 1. 前言 如果读者详细的了解了DNN神经网络的反向更新,那对我们今天的学习会有很大的帮助.我们的CNN ...

  5. 2. CNN卷积网络-前向传播算法

    1. CNN卷积网络-初识 2. CNN卷积网络-前向传播算法 3. CNN卷积网络-反向更新 1. 前言 我们已经了解了CNN的结构,CNN主要结构有输入层,一些卷积层和池化层,后面是DNN全连接层 ...

  6. 基于3D卷积神经网络的行为识别:3D Convolutional Neural Networks for Human Action Recognition

    简介: 这是一片发表在TPAMI上的文章,可以看见作者有余凯(是百度的那个余凯吗?) 本文提出了一种3D神经网络:通过在神经网络的输入中增加时间这个维度(连续帧),赋予神经网络行为识别的功能. 相应提 ...

  7. 基于3D卷积神经网络的人体行为理解(论文笔记)(转)

    基于3D卷积神经网络的人体行为理解(论文笔记) zouxy09@qq.com http://blog.csdn.net/zouxy09 最近看Deep Learning的论文,看到这篇论文:3D Co ...

  8. 机器学习-计算机视觉和卷积网络CNN

    概述 对于计算机视觉的应用现在是非常广泛的,但是它背后的原理其实非常简单,就是将每一个像素的值pixel输入到一个DNN中,然后让这个神经网络去学习这个模型,最后去应用这个模型就可以了.听起来是不是很 ...

  9. 基于孪生卷积网络(Siamese CNN)和短时约束度量联合学习的tracklet association方法

    基于孪生卷积网络(Siamese CNN)和短时约束度量联合学习的tracklet association方法 Siamese CNN Temporally Constrained Metrics T ...

随机推荐

  1. Vue中-下拉框可以选择可以填写

    <el-form-item label="方法名称"> <el-autocomplete popper-class="my-autocomplete&q ...

  2. [React] Use Prop Collections with Render Props

    Sometimes you have common use cases that require common props to be applied to certain elements. You ...

  3. 微信JSSDK使用指南

        这篇文章主要来说说微信JSSDK的一些配置和微信分享的使用,包括从前端sdk文件引入到server端和微信server的交互. 另外Tangide已经把一些工作做好了.我会简要说一说怎么把它用 ...

  4. Python输入输出及其他

    print用法 print会输出一个\n,也就是换行符,这样光标移动到了下一行行首,接着输出,之前已经通过stdout输出的东西依旧保留,而且保证我们在下面看到最新的输出结果.回车 \r 本义是光标重 ...

  5. a non-linear editing software

    VLMC, open source video editor - VideoLAN http://www.videolan.org/vlmc/

  6. 改造系统alert

    /************************************************************************* * 改造系统alert * param str 传 ...

  7. Codeforces Round #369 (Div. 2) 套题

    A:模拟水题不说 #include <iostream> #include <string.h> #include <algorithm> #include < ...

  8. 并不对劲的st表

    对于带修改的区间求和能做到O(n log n)预处理,O(log n)查询:而不带修改的可以做到O(n)预处理,O(1)查询.那么不带修改的区间最值能做到O(1)查询吗? 区间最值有这样一个性质:对于 ...

  9. js几种escape()解码与unescape()编码

    js几种escape()解码与unescape()编码 www.111cn.net 编辑:kepeer 来源:转载 一篇js几种escape()解码与unescape()编码函数,同时我们也和它和服务 ...

  10. sql的where条件中包含中文,查询不出来的处理方法

    SELECT  * FROM phonenumber_info where PROVANCE=N'广东' and  CITY=N'中山市'