[COJ0970]WZJ的数据结构(负三十)

试题描述

给你一棵N个点的无根树,点和边上均有权值。请你设计一个数据结构,回答M次操作。

1 x v:对于树上的每一个节点y,如果将x、y在树上的距离记为d,那么将y节点的权值加上d*v。

2 x:询问节点x的权值。

输入

第一行为一个正整数N。
第二行到第N行每行三个正整数ui,vi,wi。表示一条树边从ui到vi,距离为wi。
第N+1行为一个正整数M。
最后M行每行三个或两个正整数,格式见题面。

输出

对于每个询问操作,输出答案。

输入示例


输出示例


数据规模及约定

对于30%的数据:1<=N,M<=1000
另有50%的数据:1<=N,M<=100000,保证修改操作均在询问操作之前。
对于100%的数据:1<=N,M<=100000,1<=x<=N,1<=v,wi<=1000

题解

新姿势 get:动态点分治。

其实我也不知道为啥叫“动态”点分治。

首先这道题可以转化一下,对于每个节点我们不直接记录题目要求的答案,我们可以把修改操作转化成“给节点 x 的权值加上 v”,那么询问就变成了“求树上所有点到节点 x 的加权距离(就是对于所有的节点 u 求 sigma( D[u] · dist(u, x) ),这里的 D[u] 表示节点 u 的权值,dist(a, b) 表示树上路径 (a, b) 的边权总和)”。注意到边权永远是固定的。

我们可以建立出“重心树”,就是先点分治一波,然后我们把每一层分治的中心连到一块形成的新的树形结构。然后我们维护这棵树的子树信息:val[u] 表示节点 u 为根的子树中点权和;distv[u] 表示节点 u 的子树中所有点到 u 的加权距离和(注意这里加权距离是在原树上的);distfa[u] 表示节点 u 的子树中所有到 fa[u] 的加权距离和(注意这里加权距离是在原树上的,而 fa[u] 是重心树上 u 的父亲结点)。

然后我们就发现每次修改和询问都是可以 O(logn) 实现的。

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <algorithm>
using namespace std; int read() {
int x = 0, f = 1; char c = getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
return x * f;
} #define maxn 100010
#define maxm 200010
#define maxlog 19
#define LL long long int n, m, head[maxn], nxt[maxm], to[maxm], dist[maxm]; void AddEdge(int a, int b, int c) {
to[++m] = b; dist[m] = c; nxt[m] = head[a]; head[a] = m;
swap(a, b);
to[++m] = b; dist[m] = c; nxt[m] = head[a]; head[a] = m;
return ;
} int dep[maxn], mnd[maxlog][maxn<<1], Log[maxn<<1], clo, pos[maxn];
void build(int u, int pa) {
mnd[0][pos[u] = ++clo] = dep[u];
for(int e = head[u]; e; e = nxt[e]) if(to[e] != pa)
dep[to[e]] = dep[u] + dist[e], build(to[e], u), mnd[0][++clo] = dep[u];
return ;
}
void rmq_init() {
Log[1] = 0;
for(int i = 2; i <= clo; i++) Log[i] = Log[i>>1] + 1;
for(int j = 1; (1 << j) <= clo; j++)
for(int i = 1; i + (1 << j) - 1 <= clo; i++)
mnd[j][i] = min(mnd[j-1][i], mnd[j-1][i+(1<<j-1)]);
return ;
}
int cdist(int a, int b) {
int ans = dep[a] + dep[b];
int l = pos[a], r = pos[b];
if(l > r) swap(l, r);
int t = Log[r-l+1];
return ans - (min(mnd[t][l], mnd[t][r-(1<<t)+1]) << 1);
} int rt, size, f[maxn], siz[maxn];
bool vis[maxn];
void getroot(int u, int pa) {
siz[u] = 1; f[u] = 0;
for(int e = head[u]; e; e = nxt[e]) if(to[e] != pa && !vis[to[e]]) {
getroot(to[e], u);
siz[u] += siz[to[e]];
f[u] = max(f[u], siz[to[e]]);
}
f[u] = max(f[u], size - siz[u]);
if(f[rt] > f[u]) rt = u;
return ;
}
int fa[maxn];
void solve(int u) {
vis[u] = 1;
for(int e = head[u]; e; e = nxt[e]) if(!vis[to[e]]) {
f[rt = 0] = size = siz[u]; getroot(to[e], u);
fa[rt] = u; solve(rt);
}
return ;
} int val[maxn];
LL distv[maxn], distfa[maxn];
void update(int s, int v) {
for(int u = s; u; u = fa[u]) {
val[u] += v;
if(fa[u]) {
int d = cdist(fa[u], s);
distv[fa[u]] += (LL)d * v;
distfa[u] += (LL)d * v;
}
// printf("%d: %lld %lld\n", u, distv[u], distfa[u]);
}
return ;
}
LL query(int s) {
LL ans = distv[s];
for(int u = s; fa[u]; u = fa[u])
ans += distv[fa[u]] - distfa[u] + (LL)(val[fa[u]] - val[u]) * cdist(fa[u], s);
return ans;
} int main() {
n = read();
for(int i = 1; i < n; i++) {
int a = read(), b = read(), c = read();
AddEdge(a, b, c);
} build(1, 0); rmq_init();
f[rt = 0] = size = n; getroot(1, 0);
solve(rt);
// for(int i = 1; i <= n; i++) printf("%d(%d)%c", fa[i], i, i < n ? ' ' : '\n'); int q = read();
while(q--) {
int tp = read(), u = read();
if(tp == 1) {
int v = read();
update(u, v);
}
if(tp == 2) printf("%lld\n", query(u));
} return 0;
}

[COJ0970]WZJ的数据结构(负三十)的更多相关文章

  1. COJ966 WZJ的数据结构(负三十四)

    WZJ的数据结构(负三十四) 难度级别:C: 运行时间限制:20000ms: 运行空间限制:262144KB: 代码长度限制:2000000B 试题描述 给一棵n个节点的树,请对于形如"u  ...

  2. COJ970 WZJ的数据结构(负三十)

    WZJ的数据结构(负三十) 难度级别:D: 运行时间限制:1000ms: 运行空间限制:262144KB: 代码长度限制:2000000B 试题描述 给你一棵N个点的无根树,点和边上均有权值.请你设计 ...

  3. COJ968 WZJ的数据结构(负三十二)

    WZJ的数据结构(负三十二) 难度级别:D: 运行时间限制:5000ms: 运行空间限制:262144KB: 代码长度限制:2000000B 试题描述 给你一棵N个点的无根树,边上均有权值,每个点上有 ...

  4. COJ 0970 WZJ的数据结构(负三十)树分治

    WZJ的数据结构(负三十) 难度级别:D: 运行时间限制:1000ms: 运行空间限制:262144KB: 代码长度限制:2000000B 试题描述 给你一棵N个点的无根树,点和边上均有权值.请你设计 ...

  5. [COJ0968]WZJ的数据结构(负三十二)

    [COJ0968]WZJ的数据结构(负三十二) 试题描述 给你一棵N个点的无根树,边上均有权值,每个点上有一盏灯,初始均亮着.请你设计一个数据结构,回答M次操作. 1 x:将节点x上的灯拉一次,即亮变 ...

  6. COJ 1003 WZJ的数据结构(三)ST表

    WZJ的数据结构(三) 难度级别:B: 运行时间限制:3000ms: 运行空间限制:51200KB: 代码长度限制:2000000B 试题描述 请你设计一个数据结构,完成以下功能: 给定一个大小为N的 ...

  7. 数据结构(三十四)最短路径(Dijkstra、Floyd)

    一.最短路径的定义 在网图和非网图中,最短路径的含义是不同的.由于非网图没有边上的权值,所谓的最短路径,其实就是指两顶点之间经过的边数最少的路径:而对于网图来说,最短路径是指两顶点之间经过的边上权值之 ...

  8. 数据结构(三十二)图的遍历(DFS、BFS)

    图的遍历和树的遍历类似.图的遍历是指从图中的某个顶点出发,对图中的所有顶点访问且仅访问一次的过程.通常有两种遍历次序方案:深度优先遍历和广度优先遍历. 一.深度优先遍历 深度优先遍历(Depth_Fi ...

  9. COJ986 WZJ的数据结构(负十四)

    WZJ的数据结构(负十四) 难度级别:D: 运行时间限制:6000ms: 运行空间限制:262144KB: 代码长度限制:2000000B 试题描述 请你设计一个数据结构,完成以下功能: 给定一个大小 ...

随机推荐

  1. 求N!尾数有多少个0。

    方法一:假设N!=K*10M,K不能被10整除,那么N!尾数就有M个0.再对N!进行质因子分解:N!=2x*3y*5z...由于10=2*5,即每一对2和5相乘都可以得到1个0,所以M只与指数x.z有 ...

  2. java数组实现买彩票(阿基老师的打乱排序思想)

    package com.wh.array; public class Lottery { public static void main(String[] args) { int[] num=new ...

  3. php 静态绑定

    简介 编辑 后期静态绑定 从PHP 5.3.0开始,PHP增加了一个叫做后期静态绑定的功能,用于在继承范围内引用静态调用的类. 该功能从语言内部角度考虑被命名为”后期静态绑定“.”后期绑定“的意思是说 ...

  4. 安装SNMP

    http://songknight.blog.51cto.com/2599480/655337

  5. web 自动化测试 selenium基础到应用(目录)

    第一章   自动化测试前提及整体介绍 1-1功能测试和自动化测试的区别 1-2自动化测试流程有哪些 1-3自动化测试用例和手工用例的区别 1-4 自动化测试用例编写 1-5 selenium的优势以及 ...

  6. (三)Redis for StackExchange.Redis

    目录 (一)Redis for Windows正确打开方式 (二)Redis for 阿里云公网连接 (三)Redis for StackExchange.Redis StackExchange.Re ...

  7. Django 跨域CORS

    现在,前端与后端分处不同的域名,我们需要为后端添加跨域访问的支持. 我们使用CORS来解决后端对跨域访问的支持. 使用django-cors-headers扩展 参考文档https://github. ...

  8. 常见的HTTP相应状态码

    200:请求被正常处理204:请求被受理但没有资源可以返回206:客户端只是请求资源的一部分,服务器只对请求的部分资源执行GET方法,相应报文中通过Content-Range指定范围的资源.301:永 ...

  9. 删除目录文件夹时出现:rm: cannot remove `/data/wwwroot/backidc': Is a directory

    rm -f 删除目录文件夹时出现:rm: cannot remove `/data/wwwroot/backidc': Is a directory cannot remove is a direct ...

  10. 利用jquery制作滚动到指定位置触发动画

    <!DOCTYPE html><html><head> <meta charset="utf-8"> <title>利用 ...