课时14 卷积神经网络详解(上)

CNN处理的是一些数据块,在这之间有很多层,一系列的层将输入数据变换为输出数据,所以完成操作的中间量不仅是NN时候讲的那些向量,而是立体结构,有宽,高和深度,在整个计算过程中要保持这些三维特征。这里的深度指的是一个数据体的第三个维度。

工作流程

我们得到一些数据,作为网络的输入,在CNN中我们有这样的滤波器,假设现在我们只有一个滤波器,这些滤波器空间维度很小,我们用这个滤波器来和输入图像做卷积运算。这里的卷积运算,意思是说滤波器要在这个图像的空域范围内全部位置滑动,而且,在每一个位置滤波器和图像做点乘。滤波器表示为w,把这些滤波器当做你的一堆w,然后你在图像范围内滑动这个滤波器,随着我们滑动滤波器,还要计算w的转置和x的乘积加上b。这里的x是输入数据的一小块区域,大小为滤波器的大小。当滤波器在滑动的时候,最后得到的整个结果,我们叫做激活图。激活图给出了在每个空间位置处滤波器的反应。

课时15 卷积神经网络详解(下)

我们每次做池化层时都扔掉了一小部分信息

在全连接层之前会有深度减少的地方

输入的数据中,边缘的数据可能和中心不太一样

我们不会为滤波器进行特定的初始化

池化层没有参数,只有卷积层有参数

规范化层是一个进行规范化的特殊的层,在2012年之后就不再用到了。

当在做反向传播的时候一定要注意,因为参数是共享的,当你在用滤波器做卷积时,所有的神经元都共享参数。你必须小心,所有的滤波器的梯度都汇总到一个权重。

ZFNet

基于AlexNet构建
conv1的滤波器大小、步长比AlexNet更小,对原始图像做更密集的计算。
conv3、conv4、conv5相比AlexNet有更多的过滤器

VGG NET

VGG并没有在疯狂的架构选择(例如你如何设定过滤器个数,尺寸大小,过滤器的大小等参数)上做非常多的工作,VGG的关键点在于在这个操作你重复了多少次(多少层),最后同样的这组参数设定的网络结构重复层叠至16层

VGG网络有一个非常简单的线性结构

GoogLeNet

最关键的创新点是引入了inception模块,但是它仅仅是inception模块的序列,一个接一个进行排列,他们使用的是inception层而不是卷积层,随后他们使用average pool而非全连接层,所以他们省去了大量的参数,他致力于同时减少对内存和计算量的需求。

必须小心处理增加层数,如果仅仅是简单的去做,他将没有什么用处

ResNet

大致的工作原理是我们有plain net,然后选取一张图片,接着有conv,pool,然后继续conv,conv,conv,conv.在ResNet中,在这些有趣的跳跃连接中,除了这种严格将一个容量转移到下一个容量的传递之外,我们还有这些连接。你可以将很多的信息打包进一个小的容器里。

工作方式:

在一个普通的神经网络中,你有一些函数H(x),想做一些计算,你要转换映射后的值,所以你有一个权重层,你有神经元映射后的值,你要将其转换,等等。在残差网络中,你的输入不是去计算你的变换F(x),而是计算过程中需要加上输入的残差。这个2层的神经网络需要计算的是顶部输入的原始表示,而不是一种与之前x完全没关系的表示,这个就是resent模型。

这一层基本上是由默认的恒等运算,这些建立在顶部的恒等上,他只是让他更好的优化

训练残差网络过程

gpu计算空间是这个的瓶颈

斯坦福CS231n—深度学习与计算机视觉----学习笔记 课时14&&15的更多相关文章

  1. 斯坦福CS231n—深度学习与计算机视觉----学习笔记 课时3

    课时3 计算机视觉历史回顾与介绍下 ImageNet有5000万张图片,全部都是人工清洗过得,标注了超过2万个分类. CS231n将聚焦于视觉识别问题,图像分类关注的是大图整体:物体检测告诉你东西具体 ...

  2. 斯坦福CS231n—深度学习与计算机视觉----学习笔记 课时1

    课时1 计算机视觉历史回顾与介绍上 CS231n:这一一门关于计算机视觉的课程,基于一种专用的模型架构,叫做神经网络(更细一点说,是卷积神经网络CNN).计算机视觉是人工智能领域中发展最为迅猛的一个分 ...

  3. 斯坦福CS231n—深度学习与计算机视觉----学习笔记 课时26&&27

    课时26 图像分割与注意力模型(上) 语义分割:我们有输入图像和固定的几个图像分类,任务是我们想要输入一个图像,然后我们要标记每个像素所属的标签为固定数据类中的一个 使用卷积神经,网络为每个小区块进行 ...

  4. 斯坦福CS231n—深度学习与计算机视觉----学习笔记 课时24&&25

    课时24 深度学习开源库使用介绍(上) Caffe 被用于重新实现AlexNet,然后用AlexNet的特征来解决其他事情 用C++书写的,可以去GitHub上面读取源代码 主要四个类: Blob可以 ...

  5. 斯坦福CS231n—深度学习与计算机视觉----学习笔记 课时8&&9

    课时8 反向传播与神经网络初步(上) 反向传播在运算连路中,这是一种通过链式法则来进行递推的计算过程,这个链路中的每一个中间变量都会对最终的损失函数产生影响. 链式法则通常包含两部分,局部梯度和后一层 ...

  6. 斯坦福CS231n—深度学习与计算机视觉----学习笔记 课时12&&13

    课时12 神经网络训练细节part2(上) 训练神经网络是由四步过程组成,你有一个完整的数据集图像和标签,从数据集中取出一小批样本,我们通过网络做前向传播得到损失,告诉我们目前分类效果怎么样.然后我们 ...

  7. 斯坦福CS231n—深度学习与计算机视觉----学习笔记 课时11

    课时11 神经网络训练细节part1(下) 2010年,Glorot等人写的论文,我们称之为Xavier初始化,他们关注了神经元的方差表达式.他们推荐一种初始化方式,那就是对每个神经元的输入进行开根号 ...

  8. 斯坦福CS231n—深度学习与计算机视觉----学习笔记 课时10

    课时10 神经网络训练细节part1(上) 没有大量的数据也不会有太多影响,只需要找一个经过预训练的卷积神经网络然后进行调整 从数据集中抽样一小批数据, 将数据运入卷积神经网络中来计算损失值 通过反向 ...

  9. 斯坦福CS231n—深度学习与计算机视觉----学习笔记 课时7

    课时7 线性分类器损失函数与最优化(下) 我们为什么要最大化对数概率而非直接最大化概率? 你在做逻辑斯蒂回归时,如果你只是想要最大化概率,那你使用log是无意义的.因为log函数是单调函数,最大化概率 ...

随机推荐

  1. memcache的学习路线图

     memcache学习材料 //memcache自带的github 上的 wiki     //席剑飞 Memcache(MC)系列 1~8系列 评注: memcache系统写的最深的一博客,建议一读 ...

  2. 零基础学python-5.9 集合set

    今天我们来说说set 集合:是一些唯一的.不可变的对象(数值和字符串等)的一个无序的集合(collection).而且这些对象支持与数学集合理论相相应的操作. 特点: 1.一个项仅仅可以出现一次 2. ...

  3. Git多账号登陆

        最近工作上遇到了使用git+repo的情况,需要用公司的邮箱和账号名重新申请ssh公私密钥,而我本身在github上也有一些开源项目,这里就是记录一下我是如何实现git多账号登陆的.   取消 ...

  4. Intel的东进与ARM的西征(4)--理想的星空,苹果处理器之野望

    http://www.36kr.com/p/200031.html “人生五十年,如梦亦如幻.有生斯有死,壮士何所憾?”之所以没有遗憾,是因为有了理想. 公元 1582 年,日本战国时期最著名的霸主, ...

  5. linux 文件记录锁详解

    一: linux记录锁更恰当的称呼应该是范围锁,它是对文件某个范围的锁定. 关于记录锁的功能就是fcntl提供的第五个功能,具体使用如下: int fcntl(int fd, int cmd, str ...

  6. nodejs什么值得买自动签到自动评论定时任务

    本项目是基于nodejs开发,实现的功能是,什么值得买自动签到,自动评论功能,自动发邮件,支持多人多账号运行 目的是为了,解放双手,轻松获取什么值得买的经验和积分,得到更高的等级,从而突破很会员等级限 ...

  7. AptitudeSystem 2.0

    AptitudeSystem 2.0(2017-03-07) 描写叙述:Windows内核研究辅助工具 支持的系统:Windows 7.Windows 8.Windows 8.1.Windows 10 ...

  8. JVM手动分配内存(转载)

    原文内容很详细,不利于快速浏览,所以只保留了重点 原文地址 http://blog.csdn.net/mr__fang/article/details/47723767 内存检测工具jvisualVM ...

  9. Spring在3.1版本后的bean获取方法的改变

    xml配置不变,如下 <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="ht ...

  10. Delphi如何实现多国语言

    Delphi里的多语言处理方法都一样, 都是通过资源DLL的形式进行加载处理. Delphi在加载form数据的时候会判断当前的系统语言,然后根据语言加载不同的资源dll, 来实现多国语言的功能. 下 ...