【Luogu】P3414组合数(快速幂)
从n的元素中选零个,选一个,选两个,选三个...选n个的方案数和,其实就是n个元素中取任意多个元素的方案数,那对于每一个元素,都有取或不取两种情况,所以方案数最终为2^n个。
#include<cstdio>
#include<cctype>
#define mod 6662333 long long ans; long long Pow(long long n,long long i){
if(i==) return ;
if(i==) return n;
long long ret=Pow(n,i>>);
if(i&) return (((ret*ret)%mod)*n)%mod;
return (ret*ret)%mod;
} int main(){
long long n;
scanf("%lld",&n);
printf("%lld",Pow(,n-));
return ;
}
【Luogu】P3414组合数(快速幂)的更多相关文章
- [BZOJ3209]花神的数论题 组合数+快速幂
3209: 花神的数论题 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2498 Solved: 1129[Submit][Status][Disc ...
- 【luogu P3390 矩阵快速幂】 模板
题目链接:https://www.luogu.org/problemnew/show/P3390 首先要明白矩阵乘法是什么 对于矩阵A m*p 与 B p*n 的矩阵 得到C m*n 的矩阵 矩阵 ...
- NOIP2011多项式系数[快速幂|组合数|逆元]
题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别为 a ,b ,k , ...
- 【板子】gcd、exgcd、乘法逆元、快速幂、快速乘、筛素数、快速求逆元、组合数
1.gcd int gcd(int a,int b){ return b?gcd(b,a%b):a; } 2.扩展gcd )extend great common divisor ll exgcd(l ...
- UVALive 7040 Color (容斥原理+逆元+组合数+费马小定理+快速幂)
题目:传送门. 题意:t组数据,每组给定n,m,k.有n个格子,m种颜色,要求把每个格子涂上颜色且正好适用k种颜色且相邻的格子颜色不同,求一共有多少种方案,结果对1e9+7取余. 题解: 首先可以将m ...
- Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂)
Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂) Description 广义的斐波那契数列是指形如\[A_n=p*a_{n-1}+q*a_{n-2}\]的数列.今给定数列的两系数p和q, ...
- Luogu 3390 【模板】矩阵快速幂 (矩阵乘法,快速幂)
Luogu 3390 [模板]矩阵快速幂 (矩阵乘法,快速幂) Description 给定n*n的矩阵A,求A^k Input 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵 ...
- Luogu T7152 细胞(递推,矩阵乘法,快速幂)
Luogu T7152 细胞(递推,矩阵乘法,快速幂) Description 小 X 在上完生物课后对细胞的分裂产生了浓厚的兴趣.于是他决定做实验并 观察细胞分裂的规律. 他选取了一种特别的细胞,每 ...
- Gym - 101775A Chat Group 组合数+逆元+快速幂
It is said that a dormitory with 6 persons has 7 chat groups ^_^. But the number can be even larger: ...
- HDU 4704 Sum(隔板原理+组合数求和公式+费马小定理+快速幂)
题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=4704 Problem Description Sample Input 2 Sample Outp ...
随机推荐
- AndroidStudio第一次提交项目代码到git服务器/github
虽然使用AndroidStudio(以下简称as)开发并使用git管理代码已经有很长时间,但是第一次提交项目到git依然会很不顺利,网上的文章或许因为所使用版本比较老,并不一定完全凑效,因此写此笔记做 ...
- ycsb模板介绍
#对应的mongodb uri参数等mongodb.url=mongodb://127.0.0.1:27010/test_1 #对应的mongo数据库名称mongodb.database=test_1 ...
- java代码(处理json串)
package test; import com.alibaba.fastjson.JSON; import com.alibaba.fastjson.JSONObject; public class ...
- COGS 1144. [尼伯龙根之歌] 精灵魔法
★ 输入文件:alfheim.in 输出文件:alfheim.out 简单对比时间限制:1 s 内存限制:128 MB [题目背景] 『谜题在丛林中散发芳香绿叶上露珠跳跃着歌唱火焰在隐 ...
- 验证 .NET 4.6 的 SIMD 硬件加速支持的重要性
SIMD 的意思是 Single Instruction Multiple Data.顾名思义,一个指令可以处理多个数据. .NET Framework 4.6 推出的 Nuget 程序包 Syste ...
- java日期操作的工具类时间格式的转换
package cn.itcast.oa.util; import java.text.ParseException; import java.text.SimpleDateFormat;import ...
- 从汇编看c++中临时对象的析构时机
http://www.cnblogs.com/chaoguo1234/archive/2013/05/12/3074425.html c++中,临时对象一旦不需要,就会调用析构函数,释放其占有的资源: ...
- .net MVC下跨域Ajax请求(CORS)
二.CROS (Cross-origin Resource Sharing) CROS相当于一种协议,由浏览器.服务端共同完成安全验证,进行安全的跨域资源共享.对于开发人员来说就跟在本站AJAX请求一 ...
- CPP-基础:关于多态
类的多态特性是支持面向对象的语言最主要的特性,有过非面向对象语言开发经历的人,通常对这一章节的内容会觉得不习惯,因为很多人错误的认为,支持类的封装的语言就是支持面向对象的,其实不然,Visua ...
- xampp中php手动升级
http://windows.php.net/download/ //要下载的 里面有dll文件 http://www.php.net/downloads.php VC9 x86 ...