首先可以各位分开求和

定义$f(i)$表示从i到n的期望值,然后经过一些常识,发现$f(n)=1$的时候的转移,然后直接转移,也可以找到$f(n)=0$的转移。

然后高斯消元31次就可以了。

#include <map>
#include <ctime>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define maxn 20005 int h[maxn],to[maxn],ne[maxn],du[maxn],w[maxn],en=0,n,m;
double a[105][105],ans[105]; void add(int a,int b,int c)
{du[a]++;to[en]=b;ne[en]=h[a];w[en]=c;h[a]=en++;} void Gauss()
{
F(i,1,n-1)
{
int tmp=i;
F(j,i,n-1)if(fabs(a[j][i])>fabs(a[tmp][i]))tmp=j;
F(j,i,n+1) swap(a[i][j],a[tmp][j]);
F(j,i+1,n-1)
{
double tmp=a[j][i]/a[i][i];
F(k,i,n+1) a[j][k]-=a[i][k]*tmp;
}
}
D(i,n-1,1)
{
F(j,i+1,n)
a[i][n+1]-=a[i][j]*ans[j];
ans[i]=a[i][n+1]/a[i][i];
}
} double ret=0.0; void solve(int x)
{
memset(a,0,sizeof a);
memset(ans,0,sizeof ans);
F(i,1,n-1)
{
for (int j=h[i];j>=0;j=ne[j])
if ((w[j]>>x)&1)
a[i][to[j]]+=1,a[i][n+1]+=1;
else a[i][to[j]]-=1;
a[i][i]+=du[i];
}
// F(i,1,n) F(j,1,n+1) printf("%.6f%c",a[i][j],j==n+1?'\n':' ');printf("\n\n");
Gauss();
ret+=ans[1]*(1<<x);
} int main()
{
memset(h,-1,sizeof h);
scanf("%d%d",&n,&m);
F(i,1,m)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
add(a,b,c);if (a!=b) add(b,a,c);
}
D(i,30,0) solve(i);
printf("%.3f\n",ret);
}

  

BZOJ 2337 [HNOI2011]XOR和路径 ——期望DP的更多相关文章

  1. BZOJ 2337: [HNOI2011]XOR和路径 [高斯消元 概率DP]

    2337: [HNOI2011]XOR和路径 题意:一个边权无向连通图,每次等概率走向相连的点,求1到n的边权期望异或和 这道题和之前做过的高斯消元解方程组DP的题目不一样的是要求期望异或和,期望之间 ...

  2. 【概率DP/高斯消元】BZOJ 2337:[HNOI2011]XOR和路径

    2337: [HNOI2011]XOR和路径 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 682  Solved: 384[Submit][Stat ...

  3. BZOJ 2337: [HNOI2011]XOR和路径( 高斯消元 )

    一位一位考虑异或结果, f(x)表示x->n异或值为1的概率, 列出式子然后高斯消元就行了 --------------------------------------------------- ...

  4. 【BZOJ2337】[HNOI2011]XOR和路径 期望DP+高斯消元

    [BZOJ2337][HNOI2011]XOR和路径 Description 题解:异或的期望不好搞?我们考虑按位拆分一下. 我们设f[i]表示到达i后,还要走过的路径在当前位上的异或值得期望是多少( ...

  5. ●BZOJ 2337 [HNOI2011]XOR和路径

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2337题解: 概率dp, 因为异或的每一位之间没有关系,我们就依次考虑每一位k.(即边权要么为 ...

  6. 【BZOJ】2337: [HNOI2011]XOR和路径 期望+高斯消元

    [题意]给定n个点m条边的带边权无向连通图(有重边和自环),在每个点随机向周围走一步,求1到n的期望路径异或值.n<=100,wi<=10^9. [算法]期望+高斯消元 [题解]首先异或不 ...

  7. bzoj 2337 [HNOI2011]XOR和路径【高斯消元+dp】

    首先,我们发现,因为是无向图,所以相连的点之间是有"依赖性"的,所以不能直接用dp求解. 因为是xor,所以按位处理,于是列线性方程组,设$ x[i] $为点i到n异或和为1的期望 ...

  8. bzoj 2337: [HNOI2011]XOR和路径

    Description Input Output Sample Input Sample Output HINT Source Day2 终于把这个史前遗留的坑给填了... 首先异或的话由位无关性,可 ...

  9. 【BZOJ 2337】 2337: [HNOI2011]XOR和路径(概率DP、高斯消元)

    2337: [HNOI2011]XOR和路径 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1170  Solved: 683 Description ...

随机推荐

  1. idea 设置加载多个资源文件,显示本地图片

    idea 经常只会设置一个资源路径,这个路径就是项目的路径.但是当要加载的文件处于其他位置时,则需要增加虚拟路径的配置. 如图:第一个是项目路径 第二个是图片路径

  2. ejb2.0用本地引用提高EJB访问效率

    用本地引用提高EJB访问效率 EJB 1.0和1.1规范只定义了一种在EJB组件中引用另一组件的方法,即通过Bean的远程接口.如果两个Bean都在同一个容器之内,则这种网络开销是不必要的.为解决这个 ...

  3. 清空iptables

    /sbin/iptables -P INPUT ACCEPT /sbin/iptables -F iptables -L

  4. Resize a UIImage the right way

    When deadlines loom, even skilled and experienced programmers can get a little sloppy. The pressure ...

  5. maven项目在myeclipse中不出现Maven Dependencies 和maven标识的解决方法

    这种情况通常出现在 我们新加载了一个 maven的项目,但是myeclipse没识别到. 或者说 我们把该项目修改成了maven项目--------也就是说该项目 有了pom.xml 但是还没有mav ...

  6. struts2基于注解的action

    使用注解来配置Action的最大好处就是可以实现零配置,但是事务都是有利有弊的,使用方便,维护起来就没那么方便了. 要使用注解方式,我们必须添加一个额外包:struts2-convention-plu ...

  7. A*和IDA*介绍

    \(A*\)算法是一种很神奇的搜索方法,它属于启发式搜索中的一种.A*最主要的功能当然就是用来剪枝,提高搜索的效率.A*主要的实现方法是通过一个估价函数,每次对下一步进行一个估价,根据估价出的值来决定 ...

  8. 八 个优秀的 jQuery Mobile 教程

    jQuery Mobile 是 jQuery 在手机上和平板设备上的版本.jQuery Mobile不仅会给主流移动平台带来jQuery核心库,而且会发布一个完整统一的jQuery移动UI框架.虽然j ...

  9. VUE2中axios的使用方法

    一,安装 npm install axios 二,在http.js中引入 import axios from 'axios'; 三,定义http request 拦截器,添加数据请求公用信息 axio ...

  10. python中的decorator的作用

    1.概念 装饰器(decorator)就是:定义了一个函数,想在运行时动态增加功能,又不想改动函数本身的代码.可以起到复用代码的功能,避免每个函数重复性编写代码,简言之就是拓展原来函数功能的一种函数. ...