首先可以各位分开求和

定义$f(i)$表示从i到n的期望值,然后经过一些常识,发现$f(n)=1$的时候的转移,然后直接转移,也可以找到$f(n)=0$的转移。

然后高斯消元31次就可以了。

#include <map>
#include <ctime>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define maxn 20005 int h[maxn],to[maxn],ne[maxn],du[maxn],w[maxn],en=0,n,m;
double a[105][105],ans[105]; void add(int a,int b,int c)
{du[a]++;to[en]=b;ne[en]=h[a];w[en]=c;h[a]=en++;} void Gauss()
{
F(i,1,n-1)
{
int tmp=i;
F(j,i,n-1)if(fabs(a[j][i])>fabs(a[tmp][i]))tmp=j;
F(j,i,n+1) swap(a[i][j],a[tmp][j]);
F(j,i+1,n-1)
{
double tmp=a[j][i]/a[i][i];
F(k,i,n+1) a[j][k]-=a[i][k]*tmp;
}
}
D(i,n-1,1)
{
F(j,i+1,n)
a[i][n+1]-=a[i][j]*ans[j];
ans[i]=a[i][n+1]/a[i][i];
}
} double ret=0.0; void solve(int x)
{
memset(a,0,sizeof a);
memset(ans,0,sizeof ans);
F(i,1,n-1)
{
for (int j=h[i];j>=0;j=ne[j])
if ((w[j]>>x)&1)
a[i][to[j]]+=1,a[i][n+1]+=1;
else a[i][to[j]]-=1;
a[i][i]+=du[i];
}
// F(i,1,n) F(j,1,n+1) printf("%.6f%c",a[i][j],j==n+1?'\n':' ');printf("\n\n");
Gauss();
ret+=ans[1]*(1<<x);
} int main()
{
memset(h,-1,sizeof h);
scanf("%d%d",&n,&m);
F(i,1,m)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
add(a,b,c);if (a!=b) add(b,a,c);
}
D(i,30,0) solve(i);
printf("%.3f\n",ret);
}

  

BZOJ 2337 [HNOI2011]XOR和路径 ——期望DP的更多相关文章

  1. BZOJ 2337: [HNOI2011]XOR和路径 [高斯消元 概率DP]

    2337: [HNOI2011]XOR和路径 题意:一个边权无向连通图,每次等概率走向相连的点,求1到n的边权期望异或和 这道题和之前做过的高斯消元解方程组DP的题目不一样的是要求期望异或和,期望之间 ...

  2. 【概率DP/高斯消元】BZOJ 2337:[HNOI2011]XOR和路径

    2337: [HNOI2011]XOR和路径 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 682  Solved: 384[Submit][Stat ...

  3. BZOJ 2337: [HNOI2011]XOR和路径( 高斯消元 )

    一位一位考虑异或结果, f(x)表示x->n异或值为1的概率, 列出式子然后高斯消元就行了 --------------------------------------------------- ...

  4. 【BZOJ2337】[HNOI2011]XOR和路径 期望DP+高斯消元

    [BZOJ2337][HNOI2011]XOR和路径 Description 题解:异或的期望不好搞?我们考虑按位拆分一下. 我们设f[i]表示到达i后,还要走过的路径在当前位上的异或值得期望是多少( ...

  5. ●BZOJ 2337 [HNOI2011]XOR和路径

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2337题解: 概率dp, 因为异或的每一位之间没有关系,我们就依次考虑每一位k.(即边权要么为 ...

  6. 【BZOJ】2337: [HNOI2011]XOR和路径 期望+高斯消元

    [题意]给定n个点m条边的带边权无向连通图(有重边和自环),在每个点随机向周围走一步,求1到n的期望路径异或值.n<=100,wi<=10^9. [算法]期望+高斯消元 [题解]首先异或不 ...

  7. bzoj 2337 [HNOI2011]XOR和路径【高斯消元+dp】

    首先,我们发现,因为是无向图,所以相连的点之间是有"依赖性"的,所以不能直接用dp求解. 因为是xor,所以按位处理,于是列线性方程组,设$ x[i] $为点i到n异或和为1的期望 ...

  8. bzoj 2337: [HNOI2011]XOR和路径

    Description Input Output Sample Input Sample Output HINT Source Day2 终于把这个史前遗留的坑给填了... 首先异或的话由位无关性,可 ...

  9. 【BZOJ 2337】 2337: [HNOI2011]XOR和路径(概率DP、高斯消元)

    2337: [HNOI2011]XOR和路径 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1170  Solved: 683 Description ...

随机推荐

  1. 更改shell

    chsh -s /usr/local/bin/bash  #更改自己的shell为bash

  2. MyBatis插入数据之后返回插入记录的id

    MyBatis插入数据的时候,返回该记录的id<insert id="insert" keyProperty="id" useGeneratedKeys= ...

  3. 在linux下面安装mysql 确认 配置文件路径 my.cnf

    1.确认服务器my.cnf 文件路径.但不知道那个是 2.通过which mysql命令来查看mysql的安装位置: 3.通过/usr/local/mysql/bin/mysqld --verbose ...

  4. 【iview input 回车刷页面bug】input 就一个的时候 有form的时候 回车会刷页面,如果就一个input,可以不要form,或者form里面两个input 将一个input v-show false 就可以了

    [iview input 回车刷页面bug]input 就一个的时候 有form的时候 回车会刷页面,如果就一个input,可以不要form,或者form里面两个input 将一个input v-sh ...

  5. iOS7.1企业版发布后用户通过sarafi浏览器安装无效的解决方案

    关于iOS7.1企业版发布后,用户通过sarafi浏览器安装无效的解决方案: 通过测试,已经完美解决. 方案一: iOS7.1企业应用无法安装应用程序 因为证书无效的解决方案 http://blog. ...

  6. 将 PROTOCOL 的方法声明为 MUTATING

    将 PROTOCOL 的方法声明为 MUTATING 由 王巍 (@ONEVCAT) 发布于 2014/08/17 Swift 的 protocol 不仅可以被 class 类型实现,也适用于 str ...

  7. vue 封装分页组件

    分页 一般都是调接口, 接口为这种格式 {code: 0, msg: "success",…} code:0 data:{ content:[{content: "11& ...

  8. JS设置组合快捷键

    为提升用户体验,想要在web页面中通过组合快捷键调出用户帮助页面,具体实现思路是监听keyup事件,在相应的处理函数中进行逻辑编写,代码如下 $(document).keyup(function (e ...

  9. nginx在windows上面的启动bat文件

    因为windows上面zip安装nginx后启动比较麻烦,然后找了一下关于批处理文件的资料,写了一个nginx启动和关闭的脚本. 这个脚本正常情况下是可以使用的.因为脚本中并没有对nginx程序是否在 ...

  10. mysql:explain分析sql

    对于执行较慢的sql,可以使用explain命令查看这些sql的执行计划.查看该SQL语句有没有使用上了索引,有没有做全表扫描,这都可以通过explain命令来查看 mysql> explain ...