首先可以各位分开求和

定义$f(i)$表示从i到n的期望值,然后经过一些常识,发现$f(n)=1$的时候的转移,然后直接转移,也可以找到$f(n)=0$的转移。

然后高斯消元31次就可以了。

#include <map>
#include <ctime>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define maxn 20005 int h[maxn],to[maxn],ne[maxn],du[maxn],w[maxn],en=0,n,m;
double a[105][105],ans[105]; void add(int a,int b,int c)
{du[a]++;to[en]=b;ne[en]=h[a];w[en]=c;h[a]=en++;} void Gauss()
{
F(i,1,n-1)
{
int tmp=i;
F(j,i,n-1)if(fabs(a[j][i])>fabs(a[tmp][i]))tmp=j;
F(j,i,n+1) swap(a[i][j],a[tmp][j]);
F(j,i+1,n-1)
{
double tmp=a[j][i]/a[i][i];
F(k,i,n+1) a[j][k]-=a[i][k]*tmp;
}
}
D(i,n-1,1)
{
F(j,i+1,n)
a[i][n+1]-=a[i][j]*ans[j];
ans[i]=a[i][n+1]/a[i][i];
}
} double ret=0.0; void solve(int x)
{
memset(a,0,sizeof a);
memset(ans,0,sizeof ans);
F(i,1,n-1)
{
for (int j=h[i];j>=0;j=ne[j])
if ((w[j]>>x)&1)
a[i][to[j]]+=1,a[i][n+1]+=1;
else a[i][to[j]]-=1;
a[i][i]+=du[i];
}
// F(i,1,n) F(j,1,n+1) printf("%.6f%c",a[i][j],j==n+1?'\n':' ');printf("\n\n");
Gauss();
ret+=ans[1]*(1<<x);
} int main()
{
memset(h,-1,sizeof h);
scanf("%d%d",&n,&m);
F(i,1,m)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
add(a,b,c);if (a!=b) add(b,a,c);
}
D(i,30,0) solve(i);
printf("%.3f\n",ret);
}

  

BZOJ 2337 [HNOI2011]XOR和路径 ——期望DP的更多相关文章

  1. BZOJ 2337: [HNOI2011]XOR和路径 [高斯消元 概率DP]

    2337: [HNOI2011]XOR和路径 题意:一个边权无向连通图,每次等概率走向相连的点,求1到n的边权期望异或和 这道题和之前做过的高斯消元解方程组DP的题目不一样的是要求期望异或和,期望之间 ...

  2. 【概率DP/高斯消元】BZOJ 2337:[HNOI2011]XOR和路径

    2337: [HNOI2011]XOR和路径 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 682  Solved: 384[Submit][Stat ...

  3. BZOJ 2337: [HNOI2011]XOR和路径( 高斯消元 )

    一位一位考虑异或结果, f(x)表示x->n异或值为1的概率, 列出式子然后高斯消元就行了 --------------------------------------------------- ...

  4. 【BZOJ2337】[HNOI2011]XOR和路径 期望DP+高斯消元

    [BZOJ2337][HNOI2011]XOR和路径 Description 题解:异或的期望不好搞?我们考虑按位拆分一下. 我们设f[i]表示到达i后,还要走过的路径在当前位上的异或值得期望是多少( ...

  5. ●BZOJ 2337 [HNOI2011]XOR和路径

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2337题解: 概率dp, 因为异或的每一位之间没有关系,我们就依次考虑每一位k.(即边权要么为 ...

  6. 【BZOJ】2337: [HNOI2011]XOR和路径 期望+高斯消元

    [题意]给定n个点m条边的带边权无向连通图(有重边和自环),在每个点随机向周围走一步,求1到n的期望路径异或值.n<=100,wi<=10^9. [算法]期望+高斯消元 [题解]首先异或不 ...

  7. bzoj 2337 [HNOI2011]XOR和路径【高斯消元+dp】

    首先,我们发现,因为是无向图,所以相连的点之间是有"依赖性"的,所以不能直接用dp求解. 因为是xor,所以按位处理,于是列线性方程组,设$ x[i] $为点i到n异或和为1的期望 ...

  8. bzoj 2337: [HNOI2011]XOR和路径

    Description Input Output Sample Input Sample Output HINT Source Day2 终于把这个史前遗留的坑给填了... 首先异或的话由位无关性,可 ...

  9. 【BZOJ 2337】 2337: [HNOI2011]XOR和路径(概率DP、高斯消元)

    2337: [HNOI2011]XOR和路径 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1170  Solved: 683 Description ...

随机推荐

  1. Ubuntu启动项

    原文地址:http://blog.163.com/yangshuai126%40126/blog/static/1734262652010928101641555/ Ubuntu开机之后会执行/etc ...

  2. Xilinx FPGA结构

    FPGA是什么?FPGA是现场可编程逻辑阵列,由可编程逻辑资源(LUT和 REG),可编程连线,可编程I/O构成.Xilinx的FPGA的基本结构是一样的,但随着半导体工艺的发展,FPGA的逻辑容量越 ...

  3. Node.js 打造实时多人游戏框架

    在 Node.js 如火如荼发展的今天,我们已经可以用它来做各种各样的事情.前段时间UP主参加了极客松活动,在这次活动中我们意在做出一款让“低头族”能够更多交流的游戏,核心功能便是 Lan Party ...

  4. APP弱网测试点

  5. JS 字符串 时间 数字函数操作 事件

    字符串  操作 var s="abcdefg" s.tolowerCase()   转小写 s.toupperCase()   转大写 s.substring(2,5)   索引下 ...

  6. COGS 2334. [HZOI 2016]最小函数值

    时间限制:1 s   内存限制:128 MB [题目描述] 有n个函数,分别为F1,F2,...,Fn.定义Fi(x)=Aix2+Bix+Ci(x∈N∗).给定这些Ai.Bi和Ci,请求出所有函数的所 ...

  7. mysql利用binlog恢复数据详细例子

    模拟数据恢复的案例 有些时候脑瓜就会短路,难免会出错 场景:在生产环境中,我们搭建了mysql主从,备份操作都是在从备份数据库上 前提:有最近一天或者最近的全备 或者最近一天相关数据库的备份 最重要的 ...

  8. 带二级目录的Nginx配置------目前找到的最简单的方法

    由于项目不知一个,所以不得不为每一个项目建一个专有的文件夹,这就导致了在配置nginx的时候会出现二级目录 目前找到的最简单的方法     - step1:修改 vue.config.js   添加配 ...

  9. 自动发表QQ空间说说

    require("gb2312toutf8") local http = require "socket.http" local surl = "ht ...

  10. nyoj-1103-区域赛系列一多边形划分

    http://acm.nyist.net/JudgeOnline/problem.php?pid=1103 区域赛系列一多边形划分 时间限制:1000 ms  |  内存限制:65535 KB 难度: ...