题目描述:

给定一个浮点数序列(可能有正数、0和负数),求出一个最大的连续子序列乘积。

分析:若暴力求解,需要O(n^3)时间,太低效,故使用动态规划。

设data[i]:第i个数据,dp[i]:以第i个数结尾的连续子序列最大乘积,

若题目要求的是最大连续子序列和,则易确定状态转移方程为:

dp[i]=max(data[i],dp[i-1]+data[i])(dp[i]为以第i个数结尾的连续子序列最大和)

但乘积存在负负得正的问题,即原本很小的负数成了一个负数反而变大了,(负数逆袭了),

故不能照抄加法的转移方程,为了解决这个问题,需要定义两个数组:

dp1[i]:以第i个数结尾的连续子序列最大乘积

dp2[i]:以第i个数结尾的连续子序列最小乘积

转移方程:

dp1[i]=max(data[i],dp1[i-1]*data[i],dp2[i-1]*data[i]);

dp2[i]=min(data[i],dp1[i-1]*data[i],dp2[i-1]*data[i]);

最后遍历dp1得到最大值即为答案。

代码如下:

#include<stdio.h>
double max(double a,double b){return a>b?a:b;}
double min(double a,double b){return a<b?a:b;}
double dp1[100001];
double dp2[100001];
double data[100001];
double helper(double data[],int n)
{
dp1[0]=data[0];
dp2[0]=data[0];
for(int i=1;i<n;i++)
{
dp1[i]=max(data[i],max(dp1[i-1]*data[i],dp2[i-1]*data[i]));
dp2[i]=min(data[i],min(dp1[i-1]*data[i],dp2[i-1]*data[i]));
}
double ans=dp1[0];
for(int i=1;i<n;i++)
{
ans=max(ans,dp1[i]);
}
return ans;
} int main(void)
{
int i,n;
while(scanf("%d",&n)!=EOF)
{
for(i=0; i<n; ++i)
{
scanf("%lf", &data[i]);
}
double ans = helper(data, n);
printf("%lf\n",ans);
}
return 0;
}

其实还可以对空间复杂度进行化简,代码如下:

double helper(double data[], int n)
{
double ans = data[0];
double localMax = data[0];
double localMin = data[0];
for(int i=1; i<n; ++i)
{
double t1 = max(data[i], max(localMax*data[i], localMin*data[i]) );
double t2 = min(data[i], min(localMax*data[i], localMin*data[i]) ); localMax = t1;
localMin = t2; ans = localMax > ans ? localMax : ans;
} return ans;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

动态规划:最大连续子序列乘积 分类: c/c++ 算法 2014-09-30 17:03 656人阅读 评论(0) 收藏的更多相关文章

  1. APP被苹果APPStore拒绝的各种原因 分类: ios相关 app相关 2015-06-25 17:27 200人阅读 评论(0) 收藏

    APP被苹果APPStore拒绝的各种原因 1.程序有重大bug,程序不能启动,或者中途退出. 2.绕过苹果的付费渠道,我们之前游戏里的用兑换码兑换金币. 3.游戏里有实物奖励的话,一定要说清楚,奖励 ...

  2. AFNetworing进行POST上传 分类: ios技术 2015-04-01 17:03 73人阅读 评论(0) 收藏

    AFHTTPRequestOperationManager *manager = [AFHTTPRequestOperationManager manager]; //申明返回的结果是json类型 m ...

  3. 转自知乎,亲民好酒推荐 分类: fool_tree的笔记本 2014-11-08 17:37 652人阅读 评论(0) 收藏

    这里尽量为大家推荐一些符合大众喜好.业内公认好评."即使你不喜欢,你也会承认它不错"的酒款.而且介绍到的酒款还会有一个共同的特征,就是能让你方便的在网上买到. 大概会分为烈酒,利口 ...

  4. 深入N皇后问题的两个最高效算法的详解 分类: C/C++ 2014-11-08 17:22 117人阅读 评论(0) 收藏

    N皇后问题是一个经典的问题,在一个N*N的棋盘上放置N个皇后,每行一个并使其不能互相攻击(同一行.同一列.同一斜线上的皇后都会自动攻击). 一. 求解N皇后问题是算法中回溯法应用的一个经典案例 回溯算 ...

  5. OC基础知识总结 分类: ios学习 OC 2015-06-26 17:58 58人阅读 评论(0) 收藏

    //OC: Objective-C, 面向对象的C语言 //OC与C的区别 //1.OC是C的超集, C语言的所有语法都可以在OC中使用 //2.OC是面向对象 //3.OC是一门运行时语言 //4. ...

  6. Adding a WebPart to a SharePoint 2013 Master Page 分类: Sharepoint 2015-07-08 01:03 7人阅读 评论(0) 收藏

    On SharePoint 2013 you can not add the Web Parts to the master page the same way of 2010. Please use ...

  7. hdu 1232, disjoint set, linked list vs. rooted tree, a minor but substantial optimization for path c 分类: hdoj 2015-07-16 17:13 116人阅读 评论(0) 收藏

    three version are provided. disjoint set, linked list version with weighted-union heuristic, rooted ...

  8. jQuery easyUI datagrid 增加求和统计行 分类: JavaScript 2015-01-14 17:46 2178人阅读 评论(0) 收藏

    在datagrid的onLoadSuccess事件增加代码处理. <style type="text/css"> .subtotal { font-weight: bo ...

  9. 利用OpenMP实现埃拉托斯特尼(Eratosthenes)素数筛法并行化 分类: 算法与数据结构 2015-05-09 12:24 157人阅读 评论(0) 收藏

    1.算法简介 1.1筛法起源 筛法是一种简单检定素数的算法.据说是古希腊的埃拉托斯特尼(Eratosthenes,约公元前274-194年)发明的,又称埃拉托斯特尼筛法(sieve of Eratos ...

随机推荐

  1. Edmonds 开花算法

    Edmonds 开花算法 input: 图G,匹配M,未饱和点u idea: 查找从 u 開始的 M-交错路径.对每一个顶点记录父亲节点. 发现花朵.则收缩. 维护 S 和 T.S 表示沿着已经饱和的 ...

  2. Word 2013安裝字典

    不必從內建的字典中開始,Word 2013 可將您連結到 Office 市集,方便您挑選免費的字典,或從包括多語字典的字典集合中購買. 若要選擇並安裝您想要的字典,請以滑鼠右鍵按一下任何單字,並按一下 ...

  3. Office EXCEL 如何为宏命令指定快捷键或者重新设置快捷键

    1 工具-宏-宏,打开宏窗口   2 鼠标单击任意宏将其选中,点击宏选项,即可修改或为他增加快捷键.   3 注意,你直接在Visual Basci编辑器里面改是不行的,因为加了'的只是注释而已  

  4. AsyncSocket中tag參数的用处

    tag參数是为了在回调方法中匹配发起调用的方法的,不会加在数据传输中. 调用write方法,等待接收消息.收到消息后,会回调didReadData的delegate方法, delegate方法中的ta ...

  5. Scrum 每日站会

    站立式会议(Daily Scrum, 有时候我们直接叫做Daily Meeting)是Scrum敏捷软件开发方法学的实践之一,也是团队最容易实施的敏捷实践,实施成本低. 具体做法,团队成员每天固定时间 ...

  6. js 变量、函数提升

    js 变量.函数提升 先简单理解下作用域的概念,方便对变量与函数提升的概念的理解 function foo() { var x = 1; if (x) { var x = 2; } console.l ...

  7. android 自己主动拒接后再取消自己主动拒接,该联系人来电界面无图标显示,且点击挂断无反应

    1.    设置一个联系人为自己主动拒接 2.    该联系人来电 3.    取消该联系人的自己主动拒接 4.    该联系人来电 Error: 来电界面无头像显示,直接显示黑屏,且点击拒接butt ...

  8. encodeURIComponent

    <script type="text/javascript"> function show(){ var f="#wer中文测试"; f = enc ...

  9. WWDC笔记:2011 Session 125 UITableView Changes, Tips and Tricks

    What’s New Automatic Dimensions - (CGFloat)tableView:(UITableView *)tableView heightForHeaderInSect ...

  10. 设计模式-(12)迭代器模式 (swift版)

    一,概念 迭代器模式(Iterator Pattern)是 Java 和 .Net 编程环境中非常常用的设计模式.这种模式用于顺序访问集合对象的元素,不需要知道集合对象的底层表示.迭代器模式属于行为型 ...