动态规划:最大连续子序列乘积 分类: c/c++ 算法 2014-09-30 17:03 656人阅读 评论(0) 收藏
题目描述:
给定一个浮点数序列(可能有正数、0和负数),求出一个最大的连续子序列乘积。
分析:若暴力求解,需要O(n^3)时间,太低效,故使用动态规划。
设data[i]:第i个数据,dp[i]:以第i个数结尾的连续子序列最大乘积,
若题目要求的是最大连续子序列和,则易确定状态转移方程为:
dp[i]=max(data[i],dp[i-1]+data[i])(dp[i]为以第i个数结尾的连续子序列最大和)
但乘积存在负负得正的问题,即原本很小的负数成了一个负数反而变大了,(负数逆袭了),
故不能照抄加法的转移方程,为了解决这个问题,需要定义两个数组:
dp1[i]:以第i个数结尾的连续子序列最大乘积
dp2[i]:以第i个数结尾的连续子序列最小乘积
转移方程:
dp1[i]=max(data[i],dp1[i-1]*data[i],dp2[i-1]*data[i]);
dp2[i]=min(data[i],dp1[i-1]*data[i],dp2[i-1]*data[i]);
最后遍历dp1得到最大值即为答案。
代码如下:
#include<stdio.h>
double max(double a,double b){return a>b?a:b;}
double min(double a,double b){return a<b?a:b;}
double dp1[100001];
double dp2[100001];
double data[100001];
double helper(double data[],int n)
{
dp1[0]=data[0];
dp2[0]=data[0];
for(int i=1;i<n;i++)
{
dp1[i]=max(data[i],max(dp1[i-1]*data[i],dp2[i-1]*data[i]));
dp2[i]=min(data[i],min(dp1[i-1]*data[i],dp2[i-1]*data[i]));
}
double ans=dp1[0];
for(int i=1;i<n;i++)
{
ans=max(ans,dp1[i]);
}
return ans;
} int main(void)
{
int i,n;
while(scanf("%d",&n)!=EOF)
{
for(i=0; i<n; ++i)
{
scanf("%lf", &data[i]);
}
double ans = helper(data, n);
printf("%lf\n",ans);
}
return 0;
}
其实还可以对空间复杂度进行化简,代码如下:
double helper(double data[], int n)
{
double ans = data[0];
double localMax = data[0];
double localMin = data[0];
for(int i=1; i<n; ++i)
{
double t1 = max(data[i], max(localMax*data[i], localMin*data[i]) );
double t2 = min(data[i], min(localMax*data[i], localMin*data[i]) ); localMax = t1;
localMin = t2; ans = localMax > ans ? localMax : ans;
} return ans;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。
动态规划:最大连续子序列乘积 分类: c/c++ 算法 2014-09-30 17:03 656人阅读 评论(0) 收藏的更多相关文章
- APP被苹果APPStore拒绝的各种原因 分类: ios相关 app相关 2015-06-25 17:27 200人阅读 评论(0) 收藏
APP被苹果APPStore拒绝的各种原因 1.程序有重大bug,程序不能启动,或者中途退出. 2.绕过苹果的付费渠道,我们之前游戏里的用兑换码兑换金币. 3.游戏里有实物奖励的话,一定要说清楚,奖励 ...
- AFNetworing进行POST上传 分类: ios技术 2015-04-01 17:03 73人阅读 评论(0) 收藏
AFHTTPRequestOperationManager *manager = [AFHTTPRequestOperationManager manager]; //申明返回的结果是json类型 m ...
- 转自知乎,亲民好酒推荐 分类: fool_tree的笔记本 2014-11-08 17:37 652人阅读 评论(0) 收藏
这里尽量为大家推荐一些符合大众喜好.业内公认好评."即使你不喜欢,你也会承认它不错"的酒款.而且介绍到的酒款还会有一个共同的特征,就是能让你方便的在网上买到. 大概会分为烈酒,利口 ...
- 深入N皇后问题的两个最高效算法的详解 分类: C/C++ 2014-11-08 17:22 117人阅读 评论(0) 收藏
N皇后问题是一个经典的问题,在一个N*N的棋盘上放置N个皇后,每行一个并使其不能互相攻击(同一行.同一列.同一斜线上的皇后都会自动攻击). 一. 求解N皇后问题是算法中回溯法应用的一个经典案例 回溯算 ...
- OC基础知识总结 分类: ios学习 OC 2015-06-26 17:58 58人阅读 评论(0) 收藏
//OC: Objective-C, 面向对象的C语言 //OC与C的区别 //1.OC是C的超集, C语言的所有语法都可以在OC中使用 //2.OC是面向对象 //3.OC是一门运行时语言 //4. ...
- Adding a WebPart to a SharePoint 2013 Master Page 分类: Sharepoint 2015-07-08 01:03 7人阅读 评论(0) 收藏
On SharePoint 2013 you can not add the Web Parts to the master page the same way of 2010. Please use ...
- hdu 1232, disjoint set, linked list vs. rooted tree, a minor but substantial optimization for path c 分类: hdoj 2015-07-16 17:13 116人阅读 评论(0) 收藏
three version are provided. disjoint set, linked list version with weighted-union heuristic, rooted ...
- jQuery easyUI datagrid 增加求和统计行 分类: JavaScript 2015-01-14 17:46 2178人阅读 评论(0) 收藏
在datagrid的onLoadSuccess事件增加代码处理. <style type="text/css"> .subtotal { font-weight: bo ...
- 利用OpenMP实现埃拉托斯特尼(Eratosthenes)素数筛法并行化 分类: 算法与数据结构 2015-05-09 12:24 157人阅读 评论(0) 收藏
1.算法简介 1.1筛法起源 筛法是一种简单检定素数的算法.据说是古希腊的埃拉托斯特尼(Eratosthenes,约公元前274-194年)发明的,又称埃拉托斯特尼筛法(sieve of Eratos ...
随机推荐
- 图解TCP/IP第五版 -- 文件夹
非常多年前买过<TCP/IP具体解释>3卷,当时可能根本没看,也可能是看了又忘了,没有留下什么印象,当时的书也当做废品卖了. 卖书时的感觉貌似是.买了太多的书,基本都没看,搬家搬来搬去的麻 ...
- AspNetPager真假分页对照实例
从開始学习BS已经有一段时间了. 对于BS的设计,都是进行的网页设计,当中包含从数据库中取出来的数据.显示在页面上.曾经在CS中,都是使用GridView等表格控件进行显示,因为数据小.并且右側又有滚 ...
- UML视频总结
"RUP 4+1"视图 学习UML我们就必须先了解这"RUP 4+1"视图,它是架构设计的结构标准,例如以下图所看到的. watermark/2/text/aH ...
- Swift String 一些经常用法
直接上代码 //字符串 //1 推断字符串是否为空 var test1Str="" var test1Str2:String = String(); println("t ...
- 【Java 安全技术探索之路系列:J2SE安全架构】之二:安全管理器
作者:郭嘉 邮箱:allenwells@163.com 博客:http://blog.csdn.net/allenwells github:https://github.com/AllenWell 一 ...
- JMeter Web测试快速入门教程
学习前的准备 学习本教程前,你的电脑上至少应该有Apache JMeter这款软件.如果你没有,点击此处下载. 当你点进去后,你会发现它是一个依赖Java的软件 因此如果你电脑上没有Java环境,你应 ...
- 2016/3/17 Mysq select 数学函数 字符串函数 时间函数 系统信息函数 加密函数
一,数学函数主要用于处理数字,包括整型.浮点数等. ABS(X) 返回x的绝对值 SELECT ABS(-1)--返回1 CEll(X),CEILING(x) 返回大于或等于x的最小整数 SELEC ...
- 2016/2/25 html+css学习资源
html+css学习资源 1.Position is Everything,一个描述和展示在各种浏览器中发现的bug,并提供css解决方法的网站,顶! 2.一个国外的网页设计论坛 3.http://c ...
- linux 多个文件中查找字符串 hadoop 3 安装 调试
http://www.cnblogs.com/iLoveMyD/p/4281534.html 2015年2月9日 14:36:38 # find <directory> -type f - ...
- C++明确规定,不能获取构造函数和析构函数的地址
C++标准明确规定,不能获取构造函数和析构函数的地址,因此也无法形成指向他们的成员函数指针. 指向成员函数的指针可以,指向构造函数析构函数的不行.因为构造函数和析构函数都是没有返回值的,无法声明一个没 ...