hdu 3007【最小圆覆盖-随机增量法模板】
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int N=505;
int n;
double r;
struct dian
{
double x,y;
dian(double X=0,double Y=0)
{
x=X,y=Y;
}
dian operator + (const dian &a) const
{
return dian(x+a.x,y+a.y);
}
dian operator - (const dian &a) const
{
return dian(x-a.x,y-a.y);
}
dian operator * (const double &a) const
{
return dian(x*a,y*a);
}
dian operator / (const double &a) const
{
return dian(x/a,y/a);
}
}p[N],c;
double dis(dian a,dian b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
double cj(dian a,dian b)
{
return a.x*b.y-a.y*b.x;
}
dian yx(dian a,dian b,dian c)
{
dian p=b-a,q=c-a;
double c1=(p.x*p.x+p.y*p.y)/2,c2=(q.x*q.x+q.y*q.y)/2,d=cj(p,q);
return a+dian(c1*q.y-c2*p.y,c2*p.x-c1*q.x)/d;
}
int main()
{
while(scanf("%d",&n)&&n)
{
for(int i=1;i<=n;i++)
scanf("%lf%lf",&p[i].x,&p[i].y);
random_shuffle(p+1,p+1+n);
c=p[1],r=0;
for(int i=2;i<=n;i++)
if(dis(p[i],c)-r>0)
{
c=p[i],r=0;
for(int j=1;j<i;j++)
if(dis(p[j],c)-r>0)
{
c=(p[i]+p[j])/2,r=dis(p[j],c);
for(int k=1;k<j;k++)
if(dis(p[k],c)-r>0)
c=yx(p[i],p[j],p[k]),r=dis(p[k],c);
}
}
printf("%.2f %.2f %.2f\n",c.x,c.y,r);
}
return 0;
}
hdu 3007【最小圆覆盖-随机增量法模板】的更多相关文章
- 【bzoj1336/1337/2823】[Balkan2002]Alien最小圆覆盖 随机增量法
题目描述 给出N个点,让你画一个最小的包含所有点的圆. 输入 先给出点的个数N,2<=N<=100000,再给出坐标Xi,Yi.(-10000.0<=xi,yi<=10000. ...
- 【BZOJ1336】[Balkan2002]Alien最小圆覆盖 随机增量法
[BZOJ1336][Balkan2002]Alien最小圆覆盖 Description 给出N个点,让你画一个最小的包含所有点的圆. Input 先给出点的个数N,2<=N<=10000 ...
- BZOJ.2823.[AHOI2012]信号塔(最小圆覆盖 随机增量法)
BZOJ 洛谷 一个经典的随机增量法,具体可以看这里,只记一下大体流程. 一个定理:如果一个点\(p\)不在点集\(S\)的最小覆盖圆内,那么它一定在\(S\bigcup p\)的最小覆盖圆上. 所以 ...
- [BZOJ2823][BZOJ1336][BZOJ1337]最小圆覆盖(随机增量法)
算法介绍网上有很多,不解释了. 给出三点坐标求圆心方法:https://blog.csdn.net/liyuanbhu/article/details/52891868 记得先random_shuff ...
- 洛谷 P1742 最小圆覆盖 (随机增量)
题目链接:P1742 最小圆覆盖 题意 给出 N 个点,求最小的包含所有点的圆. 思路 随机增量 最小圆覆盖一般有两种做法:随机增量和模拟退火.随机增量的精确度更高,这里介绍随机增量的做法. 先将所有 ...
- HDU 3007 最小圆覆盖 计算几何
思路: 随机增量法 (好吧这数据范围并不用) //By SiriusRen #include <cmath> #include <cstdio> #include <al ...
- 最小圆覆盖(随机增量法&模拟退火法)
http://acm.hdu.edu.cn/showproblem.php?pid=3007 相关题型连接: http://acm.hdu.edu.cn/showproblem.php?pid=393 ...
- 【BZOJ-1336&1337】Alie最小圆覆盖 最小圆覆盖(随机增量法)
1336: [Balkan2002]Alien最小圆覆盖 Time Limit: 1 Sec Memory Limit: 162 MBSec Special JudgeSubmit: 1573 ...
- [BZOJ 1336] [Balkan2002] Alien最小圆覆盖 【随机增量法】
题目链接:BZOJ - 1336 题目分析 最小圆覆盖有一个算法叫做随机增量法,看起来复杂度像是 O(n^3) ,但是可以证明其实平均是 O(n) 的,至于为什么我不知道= = 为什么是随机呢?因为算 ...
随机推荐
- Java面试题总结之JDBC 和Hibernate
1.100 用户同时来访数据库,要采取什么技术? 答:采用数据库连接池. 2.什么是ORM? 答:对象关系映射(Object—Relational Mapping,简称ORM)是一种为了解决面向对象与 ...
- poj 1258 Agri-Net(Prim)(基础)
Agri-Net Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 44487 Accepted: 18173 Descri ...
- 数据库分表和分库的原理及基于thinkPHP的实现方法
为什么要分表,分库: 当我们的数据表数据量,訪问量非常大.或者是使用频繁的时候,一个数据表已经不能承受如此大的数据訪问和存储,所以,为了减轻数据库的负担,加快数据的存储,就须要将一张表分成多张,及将一 ...
- 异或巧用:Single Number
异或巧用:Single Number 今天刷leetcode,碰到了到题Single Number.认为解答非常巧妙,故记之... 题目: Given an array of integers, ev ...
- 升级iOS 9之前的注意事项
iOS 9 beta刚刚公布.就下载了官网的升级包, 使用itunes的更新功能,升级 眼看安装过程一番顺利, 升级完開始进入设置操作步骤上, 结果傻眼了 进入了输入手机password的界面, 不 ...
- python3 base64模块代码分析
#! /usr/bin/env python3 """Base16, Base32, Base64 (RFC 3548), Base85 and Ascii85 data ...
- 【MongoDB】The description of procedure in MongoDB
In this blog the procedure of mongodb will be described in details. It is known that mongodb has pro ...
- oracle 12c 13姨
搞了一下oracle 12c.有些体会还是先记下来. 12c搞搞新意思,弄了个CDB(容器数据库,可不是商务中心CBD哟)和PDB(可插拔数据库).PDB插在CDB里. 简单而言,CDB就是一个数据库 ...
- 2016/05/23 thinkphp M方法和D方法的区别
M方法和D方法的区别 ThinkPHP 中M方法和D方法都用于实例化一个模型类,M方法 用于高效实例化一个基础模型类,而 D方法 用于实例化一个用户定义模型类. 使用M方法 如果是如下情况,请考虑使用 ...
- SSH三大框架整合配置详细步骤(2)
4 配置Hibernate Hibernate MySql连接配置 在Hibernate中,可以配置很多种数据库,例如MySql.Sql Server和Oracle,Hibernate MySql连接 ...