并不对劲的bzoj4804:欧拉心算
题目大意
\(t\)(\(t\leq5000\))组询问,每次询问给出\(n\)(\(n\leq10^7\)),求:
\]
题解
枚举gcd,原式变为:
\]
\]
发现\(\sum_{j=1}^{i}[gcd(i,j)=1] = \phi(i)\)(1)
那么将\(\sum_{i=1}^{\lfloor\frac{n}{k}\rfloor}\sum_{j=1}^{\lfloor\frac{n}{k}\rfloor}[gcd(i,j)=1]\)中\(i>j\)和\(i<j\)分开考虑,相当于是把(1)式算了两遍
但是\(i=j=1\)算重(chong二声)了,所以是两个(1)式-1
即\(\sum_{i=1}^{\lfloor\frac{n}{k}\rfloor}\sum_{j=1}^{\lfloor\frac{n}{k}\rfloor}[gcd(i,j)=1] = (\sum_{i=1}{\lfloor\frac{n}{k}\rfloor}2*\phi(i))-1\)
那么原式=\(\sum_{k=1}^{n}\phi(k)( (\sum_{i=1}{\lfloor\frac{n}{k}\rfloor}2*\phi(i))-1)\)
直接整除分块就行了
代码
#include<algorithm>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<ctime>
#include<iomanip>
#include<iostream>
#include<map>
#include<queue>
#include<set>
#include<stack>
#include<vector>
#define rep(i,x,y) for(register int i=(x);i<=(y);++i)
#define dwn(i,x,y) for(register int i=(x);i>=(y);--i)
#define maxn 10000001
#define LL long long
#define lim (maxn-1)
using namespace std;
int read()
{
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)&&ch!='-')ch=getchar();
if(ch=='-')f=-1,ch=getchar();
while(isdigit(ch))x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
return x*f;
}
void write(LL x)
{
if(x==0){putchar('0'),putchar('\n');return;}
int f=0;char ch[20];
if(x<0)putchar('-'),x=-x;
while(x)ch[++f]=x%10+'0',x/=10;
while(f)putchar(ch[f--]);
putchar('\n');
return;
}
int no[maxn],p[maxn],cnt,t,n;
LL phi[maxn],f[maxn];
int main()
{
no[1]=phi[1]=1;
rep(i,2,lim)
{
if(!no[i])phi[i]=i-1,p[++cnt]=i;
for(int j=1;j<=cnt&&i*p[j]<=lim;j++)
{
no[i*p[j]]=1;
if(i%p[j]==0){phi[i*p[j]]=phi[i]*p[j];break;}
phi[i*p[j]]=phi[i]*phi[p[j]];
}
}
rep(i,1,lim)phi[i]+=phi[i-1];
rep(i,1,lim)f[i]=phi[i]*2ll-1ll;
t=read();
while(t--)
{
n=read();LL ans=0;
for(int l=1,r=0;l<=n;l=r+1)
{
r=n/(n/l);
ans+=(phi[r]-phi[l-1])*f[n/l];
}
write(ans);
}
return 0;
}
并不对劲的bzoj4804:欧拉心算的更多相关文章
- BZOJ4804 欧拉心算(莫比乌斯反演+欧拉函数+线性筛)
一通套路后得Σφ(d)μ(D/d)⌊n/D⌋2.显然整除分块,问题在于怎么快速计算φ和μ的狄利克雷卷积.积性函数的卷积还是积性函数,那么线性筛即可.因为μ(pc)=0 (c>=2),所以f(pc ...
- [BZOJ4804]欧拉心算
题面戳我 题意:求 \[\sum_{i=1}^{n}\sum_{j=1}^{n}\phi(\gcd(i,j))\] 多组数据,\(n\le10^7\). sol SBT 单组数据\(O(\sqrt n ...
- BZOJ4804: 欧拉心算(莫比乌斯反演 线性筛)
题意 求$$\sum_1^n \sum_1^n \phi(gcd(i, j))$$ $T \leqslant 5000, N \leqslant 10^7$ Sol 延用BZOJ4407的做法 化到最 ...
- bzoj4804: 欧拉心算 欧拉筛
题意:求\(\sum_{i=1}^n\sum_{j=1}^n\phi(gcd(i,j))\) 题解:\(\sum_{i==1}^n\sum_{j=1}^n\sum_{d=1}^n[gcd(i,j)== ...
- [BZOJ4804]欧拉心算:线性筛+莫比乌斯反演
分析 关于这道题套路到不能再套路了没什么好说的,其实发这篇博客的目的只是为了贴一个线性筛的模板. 代码 #include <bits/stdc++.h> #define rin(i,a,b ...
- 【bzoj4804】欧拉心算 解题报告
[bzoj4804]欧拉心算 Description 给出一个数字\(N\),计算 \[\sum_{i=1}^n\sum_{j=1}^n \varphi(\gcd(i,j))\] Input 第一行为 ...
- 【BZOJ4804】欧拉心算 莫比乌斯反演+线性筛
[BZOJ4804]欧拉心算 Description 给出一个数字N Input 第一行为一个正整数T,表示数据组数. 接下来T行为询问,每行包含一个正整数N. T<=5000,N<=10 ...
- BZOJ_4804_欧拉心算_欧拉函数
BZOJ_4804_欧拉心算_欧拉函数 Description 给出一个数字N Input 第一行为一个正整数T,表示数据组数. 接下来T行为询问,每行包含一个正整数N. T<=5000,N&l ...
- bzoj 4804 欧拉心算 欧拉函数,莫比乌斯
欧拉心算 Time Limit: 15 Sec Memory Limit: 256 MBSubmit: 408 Solved: 244[Submit][Status][Discuss] Descr ...
随机推荐
- 通过Nginx 的反向代理来加强kibana的访问安全
https://blog.csdn.net/choelea/article/details/57406086
- Idea其他设置
一.生成javadoc Tools->Gerenate JavaDoc 1. 选择是整个项目还是模块还是单个文件 2. 文档输出路径 3. Locale 选择地区,这个决定了文档的语言,中文就是 ...
- [BOI2007] Mokia
题目描述 摩尔瓦多的移动电话公司摩基亚(Mokia)设计出了一种新的用户定位系统.和其他的定位系统一样,它能够迅速回答任何形如“用户C的位置在哪?”的问题,精确到毫米.但其真正高科技之处在于,它能够回 ...
- hadoop+yarn+hbase+storm+kafka+spark+zookeeper)高可用集群详细配置
配置 hadoop+yarn+hbase+storm+kafka+spark+zookeeper 高可用集群,同时安装相关组建:JDK,MySQL,Hive,Flume 文章目录 环境介绍 节点介绍 ...
- Linux出现cannot create temp file for here-document: No space left on device的问题解决
在终端输入:cd /ho 按tab键时,显示错误: bash: cannot create temp file for here-document: No space left on device 这 ...
- SQL Server I/O Basics
SQL Server I/O Basics Chapter 1http://www.microsoft.com/technet/prodtechnol/sql/2000/maintain/sqlIO ...
- TongWeb
TongWeb 编辑 本词条缺少名片图,补充相关内容使词条更完整,还能快速升级,赶紧来编辑吧! 作为国内领先的中间件开发商,是国内最早研究J2EE技术和开发应用服务器产品的厂商.应用服务器TongWe ...
- 取汉子拼音首字母的C#方法
/// <summary> /// 获得一个字符串的汉语拼音码 /// </summary> /// <param name="strText"> ...
- 深入浅出:Linux设备驱动之字符设备驱动
一.linux系统将设备分为3类:字符设备.块设备.网络设备.使用驱动程序: 字符设备:是指只能一个字节一个字节读写的设备,不能随机读取设备内存中的某一数据,读取数据需要按照先后数据.字符设备是面向流 ...
- Go与C语言的互操作 cgo
http://tonybai.com/2012/09/26/interoperability-between-go-and-c/ // foo.h int count; void foo(); //f ...