You are a member of the space station engineering team, and are assigned a task in the construction process of the station. You are expected to write a computer program to complete the task. 
The space station is made up with a number of units, called cells. All cells are sphere-shaped, but their sizes are not necessarily uniform. Each cell is fixed at its predetermined position shortly after the station is successfully put into its orbit. It is quite strange that two cells may be touching each other, or even may be overlapping. In an extreme case, a cell may be totally enclosing another one. I do not know how such arrangements are possible.

All the cells must be connected, since crew members should be able to walk from any cell to any other cell. They can walk from a cell A to another cell B, if, (1) A and B are touching each other or overlapping, (2) A and B are connected by a `corridor', or (3) there is a cell C such that walking from A to C, and also from B to C are both possible. Note that the condition (3) should be interpreted transitively.

You are expected to design a configuration, namely, which pairs of cells are to be connected with corridors. There is some freedom in the corridor configuration. For example, if there are three cells A, B and C, not touching nor overlapping each other, at least three plans are possible in order to connect all three cells. The first is to build corridors A-B and A-C, the second B-C and B-A, the third C-A and C-B. The cost of building a corridor is proportional to its length. Therefore, you should choose a plan with the shortest total length of the corridors.

You can ignore the width of a corridor. A corridor is built between points on two cells' surfaces. It can be made arbitrarily long, but of course the shortest one is chosen. Even if two corridors A-B and C-D intersect in space, they are not considered to form a connection path between (for example) A and C. In other words, you may consider that two corridors never intersect.

Input

The input consists of multiple data sets. Each data set is given in the following format.


x1 y1 z1 r1 
x2 y2 z2 r2 
... 
xn yn zn rn

The first line of a data set contains an integer n, which is the number of cells. n is positive, and does not exceed 100.

The following n lines are descriptions of cells. Four values in a line are x-, y- and z-coordinates of the center, and radius (called r in the rest of the problem) of the sphere, in this order. Each value is given by a decimal fraction, with 3 digits after the decimal point. Values are separated by a space character.

Each of x, y, z and r is positive and is less than 100.0.

The end of the input is indicated by a line containing a zero.

Output

For each data set, the shortest total length of the corridors should be printed, each in a separate line. The printed values should have 3 digits after the decimal point. They may not have an error greater than 0.001.

Note that if no corridors are necessary, that is, if all the cells are connected without corridors, the shortest total length of the corridors is 0.000.

Sample Input

3
10.000 10.000 50.000 10.000
40.000 10.000 50.000 10.000
40.000 40.000 50.000 10.000
2
30.000 30.000 30.000 20.000
40.000 40.000 40.000 20.000
5
5.729 15.143 3.996 25.837
6.013 14.372 4.818 10.671
80.115 63.292 84.477 15.120
64.095 80.924 70.029 14.881
39.472 85.116 71.369 5.553
0

Sample Output

20.000
0.000
73.834
#include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<iomanip>
using namespace std;
#define MAXN 101
#define INF 200.0
bool been[MAXN];
int n;
double g[MAXN][MAXN],lowcost[MAXN];
/*
最小生成树,如果D(a,b)<=ra+rb,那么g[a][b]=0
否则D(a,b)>ra+rb,g[a][b] = D(a,b)-ra-rb
*/
struct pos
{
double x,y,z,r;
}a[MAXN];
double D(int i,int j)
{
double dx = a[i].x-a[j].x,dy=a[i].y-a[j].y,dz=a[i].z-a[j].z;
return sqrt(dx*dx+dy*dy+dz*dz);
}
double Prim(int beg)
{
double ans = 0.0;
memset(been,false,sizeof(been));
for(int i=;i<n;i++)
{
lowcost[i] = g[beg][i];
}
been[beg] = true;
for(int i=;i<n;i++)
{
double Minc = INF;
int k = -;
for(int j=;j<n;j++)
{
if(!been[j]&&Minc>lowcost[j])
{
Minc = lowcost[j];
k = j;
}
}
if(k==-) return -;
been[k] = true;
ans+=Minc;
for(int j=;j<n;j++)
{
if(!been[j]&&g[k][j]<lowcost[j])
{
lowcost[j] = g[k][j];
}
}
}
return ans;
}
int main()
{
while(scanf("%d",&n),n)
{
for(int i=;i<n;i++)
{
cin>>a[i].x>>a[i].y>>a[i].z>>a[i].r;
}
for(int i=;i<n;i++)
{
for(int j=i+;j<n;j++)
{
double tmp = D(i,j);
if(tmp<=a[i].r+a[j].r)
g[i][j] = g[j][i] =0.0;
else
g[i][j] = g[j][i] = tmp-a[i].r-a[j].r;
}
g[i][i] = 0.0;
}
double ans = Prim();
cout<<fixed<<setprecision()<<ans<<endl;
}
return ;
}

最小生成树 C - Building a Space Station的更多相关文章

  1. (最小生成树) Building a Space Station -- POJ -- 2031

    链接: http://poj.org/problem?id=2031 Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6011 ...

  2. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/C Description Yo ...

  3. POJ 2031 Building a Space Station【经典最小生成树】

    链接: http://poj.org/problem?id=2031 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  4. POJ 2031:Building a Space Station 最小生成树

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6083   Accepte ...

  5. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5173   Accepte ...

  6. poj 2031 Building a Space Station【最小生成树prime】【模板题】

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5699   Accepte ...

  7. POJ 2031 Building a Space Station

    3维空间中的最小生成树....好久没碰关于图的东西了.....              Building a Space Station Time Limit: 1000MS   Memory Li ...

  8. POJ2031 Building a Space Station 2017-04-13 11:38 48人阅读 评论(0) 收藏

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 8572   Accepte ...

  9. Building a Space Station POJ - 2031

    Building a Space Station POJ - 2031 You are a member of the space station engineering team, and are ...

随机推荐

  1. 分布式爬虫系统设计、实现与实战:爬取京东、苏宁易购全网手机商品数据+MySQL、HBase存储

    http://blog.51cto.com/xpleaf/2093952 1 概述 在不用爬虫框架的情况,经过多方学习,尝试实现了一个分布式爬虫系统,并且可以将数据保存到不同地方,类似MySQL.HB ...

  2. 什么是2MSL以及TIME_WAIT的作用

    TIME_WAIT主要是用来解决以下几个问题: 1)上面解释为什么主动关闭方需要进入TIME_WAIT状态中提到的: 主动关闭方需要进入TIME_WAIT以便能够重发丢掉的被动关闭方FIN包的ACK. ...

  3. jQuery实现文字横向滚动效果

    HTML代码: <div id="aaa" style="width:100px; position:relative; white-space:nowrap; o ...

  4. MVC的学习-EF的认识

    1.什么是EF EF又称持久层框架:平时C#定义的变量是保存到内存中的,一断电就没有了.而持久的意思是数据保存到硬盘盘里(数据库的sql查询是在硬盘里进行的,所以速度很慢).EF帮我们将一个对象保存到 ...

  5. Spring框架及AOP

    Spring核心概念 Spring框架大约由20个功能模块组成,这些模块主分为六个部分: Core Container :基础部分,提供了IoC特性. Data Access/Integration ...

  6. R语言曲线拟合函数(绘图)

    曲线拟合:(线性回归方法:lm) 1.x排序 2.求线性回归方程并赋予一个新变量     z=lm(y~x+I(x^2)+...) 3.plot(x,y)    #做y对x的散点图 4.lines(x ...

  7. 《网络管理》IP地址管理与子网划分

    IP地址管理——ipmaster ipmaster是一款对IP地址进行管理的软件,使用该软件可以提高网络管理员的工作效率.在大型网络中,使用该软件可以有序且高效地实现大中小型企业网IP地址的分配和管理 ...

  8. logging,numpy,pandas,matplotlib模块

    logging模块 日志总共分为以下五个级别,这五个级别自下而上进行匹配debug->info->warning->error->critical,默认的最低级别warning ...

  9. 给一个链表,若其中包含环,请找出该链表的环的入口结点,否则,输出null。

    package algorithms; /* 给一个链表,若其中包含环,请找出该链表的环的入口结点,否则,输出null. public class ListNode { int val; ListNo ...

  10. vue基础---表单输入绑定

    [一]基础用法 用 v-model 指令在表单 <input>.<textarea> 及 <select> 元素上创建双向数据绑定.它会根据控件类型自动选取正确的方 ...