You are a member of the space station engineering team, and are assigned a task in the construction process of the station. You are expected to write a computer program to complete the task. 
The space station is made up with a number of units, called cells. All cells are sphere-shaped, but their sizes are not necessarily uniform. Each cell is fixed at its predetermined position shortly after the station is successfully put into its orbit. It is quite strange that two cells may be touching each other, or even may be overlapping. In an extreme case, a cell may be totally enclosing another one. I do not know how such arrangements are possible.

All the cells must be connected, since crew members should be able to walk from any cell to any other cell. They can walk from a cell A to another cell B, if, (1) A and B are touching each other or overlapping, (2) A and B are connected by a `corridor', or (3) there is a cell C such that walking from A to C, and also from B to C are both possible. Note that the condition (3) should be interpreted transitively.

You are expected to design a configuration, namely, which pairs of cells are to be connected with corridors. There is some freedom in the corridor configuration. For example, if there are three cells A, B and C, not touching nor overlapping each other, at least three plans are possible in order to connect all three cells. The first is to build corridors A-B and A-C, the second B-C and B-A, the third C-A and C-B. The cost of building a corridor is proportional to its length. Therefore, you should choose a plan with the shortest total length of the corridors.

You can ignore the width of a corridor. A corridor is built between points on two cells' surfaces. It can be made arbitrarily long, but of course the shortest one is chosen. Even if two corridors A-B and C-D intersect in space, they are not considered to form a connection path between (for example) A and C. In other words, you may consider that two corridors never intersect.

Input

The input consists of multiple data sets. Each data set is given in the following format.


x1 y1 z1 r1 
x2 y2 z2 r2 
... 
xn yn zn rn

The first line of a data set contains an integer n, which is the number of cells. n is positive, and does not exceed 100.

The following n lines are descriptions of cells. Four values in a line are x-, y- and z-coordinates of the center, and radius (called r in the rest of the problem) of the sphere, in this order. Each value is given by a decimal fraction, with 3 digits after the decimal point. Values are separated by a space character.

Each of x, y, z and r is positive and is less than 100.0.

The end of the input is indicated by a line containing a zero.

Output

For each data set, the shortest total length of the corridors should be printed, each in a separate line. The printed values should have 3 digits after the decimal point. They may not have an error greater than 0.001.

Note that if no corridors are necessary, that is, if all the cells are connected without corridors, the shortest total length of the corridors is 0.000.

Sample Input

3
10.000 10.000 50.000 10.000
40.000 10.000 50.000 10.000
40.000 40.000 50.000 10.000
2
30.000 30.000 30.000 20.000
40.000 40.000 40.000 20.000
5
5.729 15.143 3.996 25.837
6.013 14.372 4.818 10.671
80.115 63.292 84.477 15.120
64.095 80.924 70.029 14.881
39.472 85.116 71.369 5.553
0

Sample Output

20.000
0.000
73.834
#include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<iomanip>
using namespace std;
#define MAXN 101
#define INF 200.0
bool been[MAXN];
int n;
double g[MAXN][MAXN],lowcost[MAXN];
/*
最小生成树,如果D(a,b)<=ra+rb,那么g[a][b]=0
否则D(a,b)>ra+rb,g[a][b] = D(a,b)-ra-rb
*/
struct pos
{
double x,y,z,r;
}a[MAXN];
double D(int i,int j)
{
double dx = a[i].x-a[j].x,dy=a[i].y-a[j].y,dz=a[i].z-a[j].z;
return sqrt(dx*dx+dy*dy+dz*dz);
}
double Prim(int beg)
{
double ans = 0.0;
memset(been,false,sizeof(been));
for(int i=;i<n;i++)
{
lowcost[i] = g[beg][i];
}
been[beg] = true;
for(int i=;i<n;i++)
{
double Minc = INF;
int k = -;
for(int j=;j<n;j++)
{
if(!been[j]&&Minc>lowcost[j])
{
Minc = lowcost[j];
k = j;
}
}
if(k==-) return -;
been[k] = true;
ans+=Minc;
for(int j=;j<n;j++)
{
if(!been[j]&&g[k][j]<lowcost[j])
{
lowcost[j] = g[k][j];
}
}
}
return ans;
}
int main()
{
while(scanf("%d",&n),n)
{
for(int i=;i<n;i++)
{
cin>>a[i].x>>a[i].y>>a[i].z>>a[i].r;
}
for(int i=;i<n;i++)
{
for(int j=i+;j<n;j++)
{
double tmp = D(i,j);
if(tmp<=a[i].r+a[j].r)
g[i][j] = g[j][i] =0.0;
else
g[i][j] = g[j][i] = tmp-a[i].r-a[j].r;
}
g[i][i] = 0.0;
}
double ans = Prim();
cout<<fixed<<setprecision()<<ans<<endl;
}
return ;
}

最小生成树 C - Building a Space Station的更多相关文章

  1. (最小生成树) Building a Space Station -- POJ -- 2031

    链接: http://poj.org/problem?id=2031 Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6011 ...

  2. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/C Description Yo ...

  3. POJ 2031 Building a Space Station【经典最小生成树】

    链接: http://poj.org/problem?id=2031 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  4. POJ 2031:Building a Space Station 最小生成树

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6083   Accepte ...

  5. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5173   Accepte ...

  6. poj 2031 Building a Space Station【最小生成树prime】【模板题】

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5699   Accepte ...

  7. POJ 2031 Building a Space Station

    3维空间中的最小生成树....好久没碰关于图的东西了.....              Building a Space Station Time Limit: 1000MS   Memory Li ...

  8. POJ2031 Building a Space Station 2017-04-13 11:38 48人阅读 评论(0) 收藏

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 8572   Accepte ...

  9. Building a Space Station POJ - 2031

    Building a Space Station POJ - 2031 You are a member of the space station engineering team, and are ...

随机推荐

  1. JAVA的双色球 小程序

    还是挺简单的,功能过于强大. import java.util.Arrays; import java.util.Random; import java.util.Scanner; public cl ...

  2. $CF19A\ World\ Football\ Cup$

    炒鸡\(6\)批的模拟题. 注意的是输入 把握好空格 大小写. 根据题目的这句话来排序 积分榜是按照以下原则制作的:胜利一个队得3分,平分1分,失败0分. 首先,球队按积分顺序排在积分榜上,分数相等比 ...

  3. 题解报告:hdu 2588 GCD(欧拉函数)

    Description The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written ...

  4. Intellij 下 mybatis 插件 MyBatisCodeHelperPro破解

    步骤1.破解包下载地址:https://gitee.com/pengzhile/MyBatisCodeHelper-Pro-Crack/releases 步骤2.下载:Intellij IDEA  p ...

  5. Python学习日记之运算符

  6. dede其他栏目页的logo没有完整显示怎么办?

    在首页完全没有问题,可是点击关于我们.联系我们.加入我们的时候logo图标是缺失的,这时候怎么办? 其实这个是css样式的问题,只要找到相对应页面的css,改一下他们的宽就可以了,如果高不够就自己调整 ...

  7. mongo 3.4分片集群系列之三:搭建分片集群--哈希分片 + 安全

    这个系列大致想跟大家分享以下篇章: 1.mongo 3.4分片集群系列之一:浅谈分片集群 2.mongo 3.4分片集群系列之二:搭建分片集群--哈希分片 3.mongo 3.4分片集群系列之三:搭建 ...

  8. .net core Elasticsearch 查询更新

    记录一下: 数据结构如下: public class ESUserTransaction { public long AccountId { get; set; } public string Var ...

  9. java protostuff 序列化反序列化工具

    protostuff是由谷歌开发的一个非常优秀的序列化反序列化工具 maven导入包: <dependency> <groupId>io.protostuff</grou ...

  10. js 动态加载select触发事件

    动态加载select后,手动调用一下 subjectChange函数,模拟触发change事件 function hallidChange(value) { $.ajax({ type: " ...