You are a member of the space station engineering team, and are assigned a task in the construction process of the station. You are expected to write a computer program to complete the task. 
The space station is made up with a number of units, called cells. All cells are sphere-shaped, but their sizes are not necessarily uniform. Each cell is fixed at its predetermined position shortly after the station is successfully put into its orbit. It is quite strange that two cells may be touching each other, or even may be overlapping. In an extreme case, a cell may be totally enclosing another one. I do not know how such arrangements are possible.

All the cells must be connected, since crew members should be able to walk from any cell to any other cell. They can walk from a cell A to another cell B, if, (1) A and B are touching each other or overlapping, (2) A and B are connected by a `corridor', or (3) there is a cell C such that walking from A to C, and also from B to C are both possible. Note that the condition (3) should be interpreted transitively.

You are expected to design a configuration, namely, which pairs of cells are to be connected with corridors. There is some freedom in the corridor configuration. For example, if there are three cells A, B and C, not touching nor overlapping each other, at least three plans are possible in order to connect all three cells. The first is to build corridors A-B and A-C, the second B-C and B-A, the third C-A and C-B. The cost of building a corridor is proportional to its length. Therefore, you should choose a plan with the shortest total length of the corridors.

You can ignore the width of a corridor. A corridor is built between points on two cells' surfaces. It can be made arbitrarily long, but of course the shortest one is chosen. Even if two corridors A-B and C-D intersect in space, they are not considered to form a connection path between (for example) A and C. In other words, you may consider that two corridors never intersect.

Input

The input consists of multiple data sets. Each data set is given in the following format.


x1 y1 z1 r1 
x2 y2 z2 r2 
... 
xn yn zn rn

The first line of a data set contains an integer n, which is the number of cells. n is positive, and does not exceed 100.

The following n lines are descriptions of cells. Four values in a line are x-, y- and z-coordinates of the center, and radius (called r in the rest of the problem) of the sphere, in this order. Each value is given by a decimal fraction, with 3 digits after the decimal point. Values are separated by a space character.

Each of x, y, z and r is positive and is less than 100.0.

The end of the input is indicated by a line containing a zero.

Output

For each data set, the shortest total length of the corridors should be printed, each in a separate line. The printed values should have 3 digits after the decimal point. They may not have an error greater than 0.001.

Note that if no corridors are necessary, that is, if all the cells are connected without corridors, the shortest total length of the corridors is 0.000.

Sample Input

3
10.000 10.000 50.000 10.000
40.000 10.000 50.000 10.000
40.000 40.000 50.000 10.000
2
30.000 30.000 30.000 20.000
40.000 40.000 40.000 20.000
5
5.729 15.143 3.996 25.837
6.013 14.372 4.818 10.671
80.115 63.292 84.477 15.120
64.095 80.924 70.029 14.881
39.472 85.116 71.369 5.553
0

Sample Output

20.000
0.000
73.834
#include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<iomanip>
using namespace std;
#define MAXN 101
#define INF 200.0
bool been[MAXN];
int n;
double g[MAXN][MAXN],lowcost[MAXN];
/*
最小生成树,如果D(a,b)<=ra+rb,那么g[a][b]=0
否则D(a,b)>ra+rb,g[a][b] = D(a,b)-ra-rb
*/
struct pos
{
double x,y,z,r;
}a[MAXN];
double D(int i,int j)
{
double dx = a[i].x-a[j].x,dy=a[i].y-a[j].y,dz=a[i].z-a[j].z;
return sqrt(dx*dx+dy*dy+dz*dz);
}
double Prim(int beg)
{
double ans = 0.0;
memset(been,false,sizeof(been));
for(int i=;i<n;i++)
{
lowcost[i] = g[beg][i];
}
been[beg] = true;
for(int i=;i<n;i++)
{
double Minc = INF;
int k = -;
for(int j=;j<n;j++)
{
if(!been[j]&&Minc>lowcost[j])
{
Minc = lowcost[j];
k = j;
}
}
if(k==-) return -;
been[k] = true;
ans+=Minc;
for(int j=;j<n;j++)
{
if(!been[j]&&g[k][j]<lowcost[j])
{
lowcost[j] = g[k][j];
}
}
}
return ans;
}
int main()
{
while(scanf("%d",&n),n)
{
for(int i=;i<n;i++)
{
cin>>a[i].x>>a[i].y>>a[i].z>>a[i].r;
}
for(int i=;i<n;i++)
{
for(int j=i+;j<n;j++)
{
double tmp = D(i,j);
if(tmp<=a[i].r+a[j].r)
g[i][j] = g[j][i] =0.0;
else
g[i][j] = g[j][i] = tmp-a[i].r-a[j].r;
}
g[i][i] = 0.0;
}
double ans = Prim();
cout<<fixed<<setprecision()<<ans<<endl;
}
return ;
}

最小生成树 C - Building a Space Station的更多相关文章

  1. (最小生成树) Building a Space Station -- POJ -- 2031

    链接: http://poj.org/problem?id=2031 Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6011 ...

  2. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/C Description Yo ...

  3. POJ 2031 Building a Space Station【经典最小生成树】

    链接: http://poj.org/problem?id=2031 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  4. POJ 2031:Building a Space Station 最小生成树

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6083   Accepte ...

  5. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5173   Accepte ...

  6. poj 2031 Building a Space Station【最小生成树prime】【模板题】

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5699   Accepte ...

  7. POJ 2031 Building a Space Station

    3维空间中的最小生成树....好久没碰关于图的东西了.....              Building a Space Station Time Limit: 1000MS   Memory Li ...

  8. POJ2031 Building a Space Station 2017-04-13 11:38 48人阅读 评论(0) 收藏

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 8572   Accepte ...

  9. Building a Space Station POJ - 2031

    Building a Space Station POJ - 2031 You are a member of the space station engineering team, and are ...

随机推荐

  1. spring cxf 配置步骤

    spring 项目增加web service的步骤:1.复制cxf的jar包2.web.xml配置cxf的核心控制器:org.apache.cxf.transport.servlet.CXFServl ...

  2. HDU 5514 欧拉函数应用

    前置技能: <=i且与i互质的数的和是phi(i)*i/2 思路: 显然每个人的步数是gcd(a[i],m) 把m的所有因数预处理出来 1~m-1中的每个数 只会被gcd(m,i)筛掉一遍 // ...

  3. linux C编程 gdb的使用

    linux C编程 gdb的使用 通常来说,gdb是linux在安装时自带的,在命令行键入"gdb"字符并按回车键会启动gdb调试环境. 1.gdb的基本命令 命令 说明 file ...

  4. [转]从数据到代码——基于T4的代码生成方式

    本文转自:http://www.cnblogs.com/artech/archive/2010/10/23/1859529.html 在之前写一篇文章<从数据到代码>(上篇.下篇)中,我通 ...

  5. Apache Calcite项目简介

    文章导读: 什么是Calcite? Calcite的主要功能? 如何快速使用Calcite? 什么是Calcite Apache Calcite是一个动态数据管理框架,它具备很多典型数据库管理系统的功 ...

  6. 华硕(ASUS)X554LP笔记本一开机就进入aptio setup utility 问题的解决

    某次因大意一直未插电,华硕(ASUS)X554LP笔记本后来没电关机.后来每次一开机就进入aptio setup utility界面,按F9调入默认配置,F10保存后退出,重启仍然进入aptio se ...

  7. Java_大数值_16.5.12

    如果基本的整数和浮点数精度不能满足要求,那么可以使用java.math包中的BigInteger和BigDecimal这两个类.这两个类可以处理包含任意长度数字序列的数值.BigInteger类实现了 ...

  8. POJ_1847_Tram

    Tram Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 11159   Accepted: 4089 Description ...

  9. Linux的网卡由eth0变成了eth1或eth2,如何修复??

    背景:做linux下分布式测试的时候,重新安装了两个linux虚拟机,结果分布式脚本没有做好,分布式也没有做成. 今天想练练linux命令,打开vmware,启动linux1 虚拟机,使用ifconf ...

  10. 安卓app测试之Monkey测试

    一.Monkey特点 1.运行时机:一般是产品稳定后 首轮功能测试完成的夜间进行 2.需要知道packageName 3.目的:主要测试产品是否存在崩溃问题和ANR问题. 二.获取包名的两个方法 首先 ...