算法 排序lowB三人组 冒泡排序 选择排序 插入排序
参考博客:基于python的七种经典排序算法 [经典排序算法][集锦] 经典排序算法及python实现
首先明确,算法的实质 是 列表排序。具体就是操作的列表,将无序列表变成有序列表!
一、排序的基本概念和分类
所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。排序算法,就是如何使得记录按照要求排列的方法。
排序的稳定性:
经过某种排序后,如果两个记录序号同等,且两者在原无序记录中的先后秩序依然保持不变,则称所使用的排序方法是稳定的,反之是不稳定的。
内排序和外排序
内排序:排序过程中,待排序的所有记录全部放在内存中
外排序:排序过程中,使用到了外部存储。
通常讨论的都是内排序。
影响内排序算法性能的三个因素:
- 时间复杂度:即时间性能,高效率的排序算法应该是具有尽可能少的关键字比较次数和记录的移动次数
- 空间复杂度:主要是执行算法所需要的辅助空间,越少越好。
- 算法复杂性。主要是指代码的复杂性。
根据排序过程中借助的主要操作,可把内排序分为:
- 插入排序
- 交换排序
- 选择排序
- 归并排序
按照算法复杂度可分为两类:
- 简单算法:包括冒泡排序、简单选择排序和直接插入排序
- 改进算法:包括希尔排序、堆排序、归并排序和快速排序
排序lowB三人组
为什么叫排序lowB三人组呢?因为冒泡排序,选择排序,插入排序 这三个经典算法时间复杂度都是O(n2)。空间复杂度为O(1)。
冒泡排序 Bubble sort
介绍:
冒泡排序(Bubble Sort,台湾译为:泡沫排序或气泡排序)是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越大的元素会经由交换慢慢“浮”到数列的顶端。
步骤:
- 比较相邻的元素。如果第一个比第二个大,就交换他们两个。
- 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。
- 针对所有的元素重复以上的步骤,除了最后一个。
- 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
核心:
原理是临近的数字两两进行比较,如果反序则交换,直到没有反序记录为止。按照从小到大或者从大到小的顺序进行交换。
以从小到大排序为例:
冒泡排序动画演示
算法实现
'''
冒泡排序
''' def Dubble_sort(a):
"""
两数相比较,非相邻
"""
for i in range(len(a)):
for j in range(i+1,len(a)):
if a[i] > a[j]:
a[i],a[j] = a[j],a[i]
return a def bubble_sort(li):
"""
两数相比较,相邻
"""
for i in range(len(li)-1):
for j in range(len(li)-i-1):
if li[j] > li[j+1]:
li[j],li[j+1] = li[j+1],li[j]
return li #冒泡排序-优化
#如果冒泡排序中执行一趟而没有交换,则列表已经是有序状态,可以直接结束算法。 def bubble_sort_1(li):
for i in range(len(li)-1):
exchange = False
for j in range(len(li)-i-1):
if li[j] > li[j+1]:
li[j], li[j+1] = li[j+1], li[j]
exchange = True
if not exchange:
return
return li
选择排序 Selection sort
介绍:
选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理是每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完。
另一种解释就是,直接从待排序数组里选择一个最小(或最大)的数字,每次都拿一个最小数字出来,顺序放入新数组,直到全部拿完。再简单点,对着一群数组说:你们谁最小出列,站到最前边;然后继续对剩余的无序数组说:你们谁最小出列,站到刚才那位的后边;再继续刚才的操作,一直到最后一个。现在数组有序了,从小到大
选择排序是不稳定的排序方法(比如序列[5, 5, 3]第一次就将第一个[5]与[3]交换,导致第一个5挪动到第二个5后面)。
通俗的说就是,对尚未完成排序的所有元素,从头到尾比一遍,记录下最小的那个元素的下标,也就是该元素的位置。再把该元素交换到当前遍历的最前面。其效率之处在于,每一轮中比较了很多次,但只交换一次。因此虽然它的时间复杂度也是O(n^2),但比冒泡算法还是要好一点。
思路:
一趟遍历记录最小的数,放到第一个位置;
再一趟遍历记录剩余列表中最小的数,继续放置;
假如,有一个无须序列A=[6,3,1,9,2,5,8,7,4],选择排序的过程应该如下:
第一趟:选择最小的元素,然后将其放置在数组的第一个位置A[0],将A[0]=6和A[2]=1进行交换,此时A=[1,3,6,9,2,5,8,7,4];
第二趟:由于A[0]位置上已经是最小的元素了,所以这次从A[1]开始,在剩下的序列里再选择一个最小的元素将其与A[1]进行交换。即这趟选择过程找到了最小元素A[4]=2,然后与A[1]=3进行交换,此时A=[1,2,6,9,3,5,8,7,4];
第三趟:由于A[0]、A[1]已经有序,所以在A[2]~A[8]里再选择一个最小元素与A[2]进行交换,然后将这个过程一直循环下去直到A里所有的元素都排好序为止。这就是选择排序的精髓。因此,我们很容易写出选择排序的核心代码部分,即选择的过程,就是不断的比较、交换的过程。
整个选择的过程如下图所示:
选择排序动画展示:
算法实现:
'''
选择排序
'''
def select_sort(li):
for i in range(len(li) - 1):
min_loc = i
for j in range(i+1, len(li)):
if li[j] < li[min_loc]:
min_loc = j
if min_loc != i:
li[i], li[min_loc] = li[min_loc], li[i] return li
插入排序 Insertion sort
介绍:
有一个已经有序的数据序列,要求在这个已经排好的数据序列中插入一个数,但要求插入后此数据序列仍然有序,这个时候就要用到一种新的排序方法——插入排序法。
插入排序的基本操作就是将一个数据插入到已经排好序的有序数组中,从而得到一个新的、个数加一的有序数组,算法适用于少量数据的排序,时间复杂度为O(n^2)。是稳定的排序方法。
插入算法把要排序的数组分成两部分:第一部分包含了这个数组的所有元素,但将最后一个元素除外(让数组多一个空间才有插入的位置),而第二部分就只包含这一个元素(即待插入元素)。在第一部分排序完成后,再将这个最后元素插入到已排好序的第一部分中。
总结如下:
0、可以形象的理解为整理扑克牌!假设你拿到手的一套顺序很乱的牌,当你梳理的时候就想当于是在做 插入排序 操作。
1、插入排序就是每一步都将一个待排数据按其大小插入到已经排序的数据中的适当位置,直到全部插入完毕。
2、把列表分为有序区和无序区两个部分。最初有序区只有一个元素。
3、每次从无序区选择一个元素,插入到有序区的位置,直到无序区变空。
算法实现:
"""
插入排序 (一般都会选取第一个数为起始数,同时索引查找也不能越界)
"""
def insert_sort(li):
"""
数据换来换取的方法
"""
for i in range(1, len(li)):
tmp = li[i]
j = i - 1
while j >= 0 and tmp < li[j]:
li[j + 1] = li[j]
j = j - 1
li[j + 1] = tmp
return li def Insertion_sort(a):
"""
按照索引插来插去的办法
"""
for i in range(1,len(a)):
j = i
while j>0 and a[j-1]>a[i]:
j -= 1
a.insert(j,a[i])
a.pop(i+1)
return a
该算法需要一个记录的辅助空间。最好情况下,当原始数据就是有序的时候,只需要一轮对比,不需要移动记录,此时时间复杂度为O(n)。然而,这基本是幻想。
算法 排序lowB三人组 冒泡排序 选择排序 插入排序的更多相关文章
- 算法之LOWB三人组之选择排序
选择排序 思想是在一个列表中每次循环一遍,拿到最小值,接着再从剩下的无序区中继续拿最小值,如此循环,直到结束. 时间复杂度为O(n^2) # 最简单的一个选择排序,循环一个列表,拿到最小值,添加到一个 ...
- 算法排序-lowB三人组
冒泡排序思路: 选择排序思路: 插入排序思路: 小结: 详细代码解释看下一篇
- 排序算法lowb三人组-冒泡排序
冒泡排序:顾名思义就是像气泡从水里浮出来一样 把列表立起来如上图所示,从列表的第0项开始循环(把最大的数想成此次循环的气泡) 要把最大的放到上面那那就用第0项开始一次和剩下的开始比较,只要比第0项小就 ...
- 算法之LOWB三人组之冒泡排序
排序 冒泡排序(Bubble Sort)时间复杂度为O(n^2) 列表每两个相邻的数,如果前面比后面大,则交换这两个数 一趟排序完成后,则无序区减少一个数,有序区增加一个数. def bubble_s ...
- 算法之LOWB三人组之插入排序
插入排序 思想:类似于抽扑克牌,共有8张扑克牌,手里默认有一张,桌面上有7张,我们每次从桌面上抽一张和手里的牌进行比较,如果比手里的牌大,则直接放到手里的牌的后面,如果比手里的牌小,则放到手里的牌的前 ...
- 1、算法介绍,lowB三人组,快速排序
1.什么是算法 2.递归 # 一直递归,递归完成再打印 def func4(x): if x > 0: func4(x - 1) print(x) func4(5) 3.时间 复杂度 (1)引入 ...
- python算法(一)基本知识&冒泡排序&选择排序&插入排序
本节内容: 算法基本知识 冒泡排序 选择排序 插入排序 1. 算法基本知识 1.1 什么是算法? 算法(algorithm):就是定义良好的计算过程,他取一个或一组的值为输入,并产生出一个或一组值作为 ...
- [Swift]八大排序算法(三):选择排序 和 简单选择排序
排序分为内部排序和外部排序. 内部排序:是指待排序列完全存放在内存中所进行的排序过程,适合不太大的元素序列. 外部排序:指的是大文件的排序,即待排序的记录存储在外存储器上,待排序的文件无法一次装入内存 ...
- 归并排序 & 计数排序 & 基数排序 & 冒泡排序 & 选择排序 ----> 内部排序性能比较
2.3 归并排序 接口定义: int merge(void* data, int esize, int lpos, int dpos, int rpos, int (*compare)(const v ...
随机推荐
- Cesium 一个导致浏览器内存一直增长的方法
为了实时更改模型的位置,给模型附上ID,后面判断如果传来的数据中没有已经创建的模型,删掉该模型时用到方法:viewer.entities.removeById(modelId);和viewer.ent ...
- UWP:可滚动的PivotHeader
UWP开发里,Pivot真是个令人又爱又恨的控件.为了实现某些可滚动Header的效果,有些大佬甚至去掉了原本的Header,使用一个ListView或者ListBox自己画Header,不过这样会让 ...
- 数据段、代码段、堆栈段、BSS段的区别
进程(执行的程序)会占用一定数量的内存,它或是用来存放从磁盘载入的程序代码,或是存放取自用户输入的数据等等.不过进程对这些内存的管理方式因内存用 途 不一而不尽相同,有些内存是事先静态分配和统一回收的 ...
- lua对多个精灵执行一系列动作,延时失效
function MainPlayerCards:sendCards() local winSize = cc.Director:getInstance():getWinSize() local nS ...
- 算法题丨Remove Duplicates from Sorted Array II
描述 Follow up for "Remove Duplicates": What if duplicates are allowed at most twice? 示例 Giv ...
- Entity Framework——并发策略
使用EF框架遇到并发时,一般采取乐观并发控制. 1支持并发检验 为支持并发检验,需要对实体进行额外的设置.默认情况下是不支持并发检验的.有以下两种方式: 方式名称 说明 时间戳注解/行版本 使用Tim ...
- Python-turtle库知识小结(python绘图工具)
turtle:海龟(海龟库) Turtle库是Python语言中一个很流行的绘制图像的函数库 使用之前需要导入库:import turtle • turtle.setup(width,height,s ...
- Go语言的数组
在 Go 语言里,数组是一个长度固定的数据类型,用于存储一段具有相同的类型的元素的连续块.数组存储的类型可以是内置类型,如整型或者字符串,也可以是某种结构类型. 1 数组特性 (1)内存是连续分配,C ...
- 启动django应用报错 “Error: [WinError 10013] 以一种访问权限不允许的方式做了一个访问套接字的尝试。”
启动django应用时报如下错误 "Error: [WinError 10013] 以一种访问权限不允许的方式做了一个访问套接字的尝试." 网上查了一下,是8000端口被其他程序占 ...
- sys模块的使用
import sys,time ''' if sys.argv[1]=='sleepy': print('nongsi') else: print('....')''' #进度条 for i in r ...