分三种情况讨论

k=1时,对于每一位而言,只要有一个数这一位是1,那么这个就有0.5的概率是1,选他就是1,不选就是0,有第二个的话,在第一个选或不选的前提下,也各有0.5的几率选或不选,0和1的概率还是一半一半。所以无论有几个,只要有任意一个数该位不得0,期望就是(1<<i)/2。所以我们只需要把所有的或起来除以二即可。

k=2时,我们需要记录每两位之间的贡献,如果所有的数这两位都一样而且有都是1的数,那么这两位作出的贡献就是(1<<i+j)/2,

如果有不一样的,那么贡献就是(1<<i+j)/4,

k>=3时,我们发现现在的异或和最大是(1<<22),因为题目保证答案在(1<<63)内,所以我们状压直接暴力乱搞就好了,因为线性基的期望就是原数组的期望。然而我并不会理性证明,只能感性理解

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<vector>
#define LL unsigned long long
#define N 100500
using namespace std;
int n,m,p[],bo[];
LL a[N],ANS,res;
vector<int> v;
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)scanf("%llu",&a[i]);
if(m==){
LL ans=;
for(int i=;i<=n;i++)ans|=a[i];
if(ans&1ll)printf("%llu.5\n",ans>>1ll);
else printf("%llu\n",ans>>1ll);
}
else if(m==){
LL ans=;
for(int i=;i<=n;i++)ans|=a[i];
for(int i=;i<=;i++)if(ans&(1ll<<i))bo[i]=;
for(int i=;i<=;i++)if(bo[i]){
for(int j=;j<=;j++)if(bo[j]){
bool flag=;
for(int k=;k<=n;k++)if(((a[k]>>i)&)!=((a[k]>>j)&)){flag=;break;}
if(i+j--flag<)res++;
else ANS+=1ll<<i+j--flag;
}
}
ANS+=res>>1ll;res&=1ll;
printf("%llu",ANS);
if(res)printf(".5\n");
}
else{
for(int i=;i<=n;i++)
for(int j=;~j;j--)if(a[i]&(1ll<<j)){
if(p[j])a[i]^=a[p[j]];
else{v.push_back(a[i]);p[j]=i;break;}
}
int nn=v.size();
for(int i=;i<(<<nn);i++){
LL val=,a=,b=;
for(int j=;j<nn;j++)if(i&(<<j))val^=v[j];
for(int j=;j<=m;j++){
a=a*val;b=b*val;
a+=(b>>nn);b&=(1ll<<nn)-;
}
ANS+=a;res+=b;
ANS+=res>>nn;res&=(1ll<<nn)-;
}
printf("%llu",ANS);
if(res)printf(".5\n");
}
return ;
}

bzoj3811 玛里苟斯的更多相关文章

  1. BZOJ3811 玛里苟斯(线性基+概率期望)

    k=1的话非常好做,每个有1的位都有一半可能性提供贡献.由组合数的一些性质非常容易证明. k=2的话,平方的式子展开可以发现要计算的是每一对位提供的贡献,于是需要计算每一对位被同时选中的概率.找出所有 ...

  2. 【BZOJ3811】玛里苟斯(线性基)

    [BZOJ3811]玛里苟斯(线性基) 题面 BZOJ 题解 \(K=1\)很容易吧,拆位考虑贡献,所有存在的位出现的概率都是\(0.5\),所以答案就是所有数或起来的结果除二. \(K=2\)的情况 ...

  3. 【bzoj3811】【清华集训2014】玛里苟斯

    3811: 玛里苟斯 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 500  Solved: 196[Submit][Status][Discuss] ...

  4. 【BZOJ3811/UOJ36】 玛里苟斯

    Description 魔法之龙玛里苟斯最近在为加基森拍卖师的削弱而感到伤心,于是他想了一道数学题. S 是一个可重集合,S={a1,a2,…,an}. 等概率随机取 S 的一个子集 A={ai1,… ...

  5. bzoj3811 uoj36 玛里苟斯

    做题前问了一下miaom,得到了一个奇怪的回答 mmp 这题分类讨论 k=1sb题 k=2按位计算,把每个数看成几个2的幂次的和,按位跑期望 k>2线性基sb题 没了 #include<i ...

  6. bzoj 3811: 玛里苟斯

    3811: 玛里苟斯 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 190  Solved: 95[Submit][Status][Discuss] ...

  7. uoj 36 玛里苟斯

    [清华集训2014]玛里苟斯 - 题目 - Universal Online Judge k=1,2,3,4,5各占20pts是提示 应当分开考虑 k=1 拆位,如果第i位有1,则有1/2的概率xor ...

  8. 清华集训2014 day1 task1 玛里苟斯

    题目 这可算是描述很简单的一道题了!但是不简单. \(S\)是一个可重集合,\(S = \{a_1, a_2, \dots, a_n \}\). 等概率随机取\(S\)的一个子集\(A = \{a_{ ...

  9. [UOJ]#36. 【清华集训2014】玛里苟斯

    题目大意:给n个数字,求子集的异或和的k次方的期望(n<=10^5,k<=5,保证答案小于2^63) 做法:首先如果从集合中拿出a和b,把a和a xor b放回集合,子集的异或和与原来是一 ...

随机推荐

  1. Mac电脑配置Apache服务器详细说明

    Mac电脑服务器配置过程,无论是个人学习,还是公司测试都非常实用,流程精简易懂,用于让Mac电脑做服务器方便做网络数据请求的测试. 第一步:定位到 Apache2 目录 $ cd /etc/Apach ...

  2. 关于web页面JApplet打印小票

    版权所有 做这个的例子太少,我把我做的示例亮出来 一.先说说需要的版本 1.我用的浏览器只有ie: 火狐只支持52版本以下,并且是java7.java8.chrome不支持 2.applet客户端打印 ...

  3. Java多线程 阻塞队列和并发集合

    转载:大关的博客 Java多线程 阻塞队列和并发集合 本章主要探讨在多线程程序中与集合相关的内容.在多线程程序中,如果使用普通集合往往会造成数据错误,甚至造成程序崩溃.Java为多线程专门提供了特有的 ...

  4. 转发 JBPM工作流小结

    JBoss 题记:某部门领导有天突发奇想,把我们几个人叫过去,曰:最近出去开会,老有人推销自己的工作流产品,说的这好那好,你们几个给我研究研究.正好刚做完的xxx子系统里有一个申请审批的流程,你们按这 ...

  5. 【转】Elasticsearch学习

    原作者:铭毅天下,原文地址:blog.csdn.net/laoyang360 https://blog.csdn.net/wojiushiwo987/article/details/52244917 ...

  6. Python-网站页面代码获取

    Python3.6 库:urllib3, bs4 主程序是抓取亚马逊图书销售排名数据,但是亚马逊应该是加了反爬虫,拒绝疑似机器人的请求,这部分暂时以百度代替. 其实简单的页面抓取,常用的urllib. ...

  7. Bear and Friendship Condition-HZUN寒假集训

    Bear and Friendship Condition time limit per test 1 secondmemory limit per test 256 megabytesinput s ...

  8. C语言代码

    //计算1/1+1/ (1+2) +1/ (1+2+3) +…+1/(1+2+…n)的值,要求小数点后保留6位,n从键盘输入 #include<stdio.h> main(){ ; ; i ...

  9. [ SSH框架 ] Struts2框架学习之一

    一.Struts2框架的概述 Struts2是一种基于MVC模式的轻量级Web框架,它自问世以来,就受到了广大Web开发者的关注,并广泛应用于各种企业系统的开发中.目前掌握 Struts2框架几乎成为 ...

  10. linux环境安装svn并进行多个源码库区分管理

    关于svn的文档有很多大部分已Windows为例子,因公司没有Windows服务器经过一天的曲折终于初步安装了解了svn.下面一些经验希望能帮助新手 本文采用的yum安装(简单快速没必要源码) 1.y ...