BZOJ_5118_Fib数列2_矩阵乘法+欧拉定理

Description

Fib定义为Fib(0)=0,Fib(1)=1,对于n≥2,Fib(n)=Fib(n-1)+Fib(n-2)
现给出N,求Fib(2^n).

Input

本题有多组数据。第一行一个整数T,表示数据组数。
接下来T行每行一个整数N,含义如题目所示。
n≤10^15, T≤5

Output

输出共T行,每行一个整数为所求答案。
由于答案可能过大,请将答案mod 1125899839733759后输出

Sample Input

2
2
31

Sample Output

3
343812777493853

根据欧拉定理,有$a^{n}modp=a^{nmod\varphi(p)}modp$。
然后矩阵乘法即可。需要用到快速乘
 
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
typedef long long ll;
const ll p=1125899839733759ll;
ll n;
ll qc(ll x,ll y,ll mod) {
ll re=0;
for(;y;y>>=1ll,x=(x+x)%mod) if(y&1ll) re=(re+x)%mod;
return re;
}
ll qp(ll x,ll y,ll mod) {
ll re=1;
for(;y;y>>=1ll,x=qc(x,x,mod)) if(y&1ll) re=qc(re,x,mod);
return re;
}
struct Mat {
ll v[2][2];
Mat() {memset(v,0,sizeof(v));}
Mat operator * (const Mat &x) const {
Mat re; int i,j,k;
for(i=0;i<2;i++) {
for(j=0;j<2;j++) {
for(k=0;k<2;k++) {
(re.v[i][j]+=qc(v[i][k],x.v[k][j],p))%=p;
}
}
}
return re;
}
};
Mat pow(Mat &x,ll y) {
Mat I;
I.v[0][0]=I.v[1][1]=1;
while(y) {
if(y&1ll) I=I*x;
x=x*x;
y>>=1ll;
}
return I;
}
int main() {
int T;
scanf("%d",&T);
while(T--) {
scanf("%lld",&n);
n=qp(2,n,p-1);
Mat x;
x.v[0][1]=x.v[1][0]=x.v[1][1]=1;
Mat T=pow(x,n);
printf("%lld\n",T.v[1][0]);
}
}

BZOJ_5118_Fib数列2_矩阵乘法+欧拉定理的更多相关文章

  1. BZOJ_3231_[Sdoi2008]递归数列_矩阵乘法

    BZOJ_3231_[Sdoi2008]递归数列_矩阵乘法 Description 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1a ...

  2. Luogu P1962 斐波那契数列(矩阵乘法模板)

    传送门(其实就是求斐波那契数列....) 累了 明天再解释 做这道题需要一些关于矩阵乘法的基础知识. 1. 矩阵乘法的基础运算 只有当矩阵A的列数等于矩阵B的行数时,A与B可以相乘(A的行数不一定等于 ...

  3. 【wikioi】1281 Xn数列(矩阵乘法)

    http://wikioi.com/problem/1281/ 矩阵真是个神奇的东西.. 只要搞出一个矩阵乘法,那么递推式可以完美的用上快速幂,然后使复杂度降到log 真是神奇. 在本题中,应该很快能 ...

  4. codevs 3332 数列 (矩阵乘法)

    /* 裸地矩阵乘法 矩阵很好想的 1 1 0 0 0 1 1 0 0 */ #include<iostream> #include<cstring> #include<c ...

  5. 题解——洛谷P1962 斐波那契数列(矩阵乘法)

    矩阵乘法加速线性递推的典型 大概套路就是先构造一个矩阵\( F \)使得另一初始矩阵\( A \)乘以\( F^{x} \)能够得出第n项 跑的飞快 虽然我也不知道那个矩阵要怎么构造 或许就像我使用了 ...

  6. bzoj 3231: [Sdoi2008]递归数列【矩阵乘法】

    今天真是莫名石乐志 一眼矩阵乘法,但是这个矩阵的建立还是挺有意思的,就是把sum再开一列,建成大概这样 然后记!得!开!long!long!! #include<iostream> #in ...

  7. 【wikioi】1250 Fibonacci数列(矩阵乘法)

    http://wikioi.com/problem/1250/ 我就不说这题有多水了. 0 1 1 1 矩阵快速幂 #include <cstdio> #include <cstri ...

  8. 1250 Fibonacci数列(矩阵乘法快速幂)

    1250 Fibonacci数列  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond       题目描述 Description 定义:f0=f1=1, f ...

  9. codevs 1281 Xn数列 (矩阵乘法)

    /* 再来个题练练手 scanf longlong 有bug....... */ #include<cstdio> #include<iostream> #include< ...

随机推荐

  1. css左侧固定宽度右侧自适应

    左侧固定宽,右侧自适应屏幕宽: 左右两列,等高布局: 左右两列要求有最小高度,例如:200px;(当内容超出200时,会自动以等高的方式增高) 要求不用JS或CSS行为实现: 仔细分析试题要求,要达到 ...

  2. CRM客户关系管理系统(十一)

    第十一章.学员报名流程开发 11.1.面包屑的制作 Boorstrap路径导航条 (1)table_obj_list.html页面面包屑 def table_obj_list 返回数据改成locals ...

  3. Mybatis解决jdbc编程的问题

    1.1.1  Mybatis解决jdbc编程的问题 1.  数据库链接创建.释放频繁造成系统资源浪费从而影响系统性能,如果使用数据库链接池可解决此问题. 解决:在SqlMapConfig.xml中配置 ...

  4. [转]web服务器压力测试工具

    http_load学习心得: 测试网站每秒所能承受的平均访问量(吞吐量) http_load -parallel 5 -fetches 1000 urls.txt这段命令行是同时使用5个进程,随机访问 ...

  5. IT小团队的管理者的突围之道

    笔者前几天被问到一个问题,你在团队管理方面有什么值得分享的吗?咋一听,实用千言万语,但是事后回忆说出来的东西感觉空无一物,缺少干货.故想通过写一篇随笔思考整理一下,刷新一下自己对小团队管理的认知.这里 ...

  6. python---内置模块

    时间模块 时间分为三种类型:时间戳,结构化时间,格式化时间 #时间模块,time import time #时间戳 x = time.time() time.gmtime() #将时间戳转换成UTC时 ...

  7. KNN算法思想与实现

    第二章 k近邻 2.1 算法描述 (1)采用测量不同特征值之间的距离进行分类 优点:对异常点不敏感,精度高,无数据输入设定 缺点:空间,计算复杂度高 适合数据:标称与数值 (2)算法的工作原理: 基于 ...

  8. break-跳出内循环

    i = 1 j = 1 while i <= 10: print('第%d个碗' % i) while j <= 10: if j == 5: break else: print('这是内 ...

  9. jvm GC

    JavaGC.新生代.老年代 Java 中的堆是 JVM所管理的最大的一块内存空间,主要用于存放各种类的实例对象. 在 Java 中,堆被划分成两个不同的区域:新生代 ( Young ).老年代 ( ...

  10. Java io使用简介

    图:Java io概览图 流的概念和作用 流是一组有顺序的,有起点和终点的字节集合,是对数据传输的总称或抽象.即数据在两设备间的传输称为流,流的本质是数据传输,根据数据传输特性将流抽象为各种类,方便更 ...