BZOJ_5118_Fib数列2_矩阵乘法+欧拉定理

Description

Fib定义为Fib(0)=0,Fib(1)=1,对于n≥2,Fib(n)=Fib(n-1)+Fib(n-2)
现给出N,求Fib(2^n).

Input

本题有多组数据。第一行一个整数T,表示数据组数。
接下来T行每行一个整数N,含义如题目所示。
n≤10^15, T≤5

Output

输出共T行,每行一个整数为所求答案。
由于答案可能过大,请将答案mod 1125899839733759后输出

Sample Input

2
2
31

Sample Output

3
343812777493853

根据欧拉定理,有$a^{n}modp=a^{nmod\varphi(p)}modp$。
然后矩阵乘法即可。需要用到快速乘
 
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
typedef long long ll;
const ll p=1125899839733759ll;
ll n;
ll qc(ll x,ll y,ll mod) {
ll re=0;
for(;y;y>>=1ll,x=(x+x)%mod) if(y&1ll) re=(re+x)%mod;
return re;
}
ll qp(ll x,ll y,ll mod) {
ll re=1;
for(;y;y>>=1ll,x=qc(x,x,mod)) if(y&1ll) re=qc(re,x,mod);
return re;
}
struct Mat {
ll v[2][2];
Mat() {memset(v,0,sizeof(v));}
Mat operator * (const Mat &x) const {
Mat re; int i,j,k;
for(i=0;i<2;i++) {
for(j=0;j<2;j++) {
for(k=0;k<2;k++) {
(re.v[i][j]+=qc(v[i][k],x.v[k][j],p))%=p;
}
}
}
return re;
}
};
Mat pow(Mat &x,ll y) {
Mat I;
I.v[0][0]=I.v[1][1]=1;
while(y) {
if(y&1ll) I=I*x;
x=x*x;
y>>=1ll;
}
return I;
}
int main() {
int T;
scanf("%d",&T);
while(T--) {
scanf("%lld",&n);
n=qp(2,n,p-1);
Mat x;
x.v[0][1]=x.v[1][0]=x.v[1][1]=1;
Mat T=pow(x,n);
printf("%lld\n",T.v[1][0]);
}
}

BZOJ_5118_Fib数列2_矩阵乘法+欧拉定理的更多相关文章

  1. BZOJ_3231_[Sdoi2008]递归数列_矩阵乘法

    BZOJ_3231_[Sdoi2008]递归数列_矩阵乘法 Description 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1a ...

  2. Luogu P1962 斐波那契数列(矩阵乘法模板)

    传送门(其实就是求斐波那契数列....) 累了 明天再解释 做这道题需要一些关于矩阵乘法的基础知识. 1. 矩阵乘法的基础运算 只有当矩阵A的列数等于矩阵B的行数时,A与B可以相乘(A的行数不一定等于 ...

  3. 【wikioi】1281 Xn数列(矩阵乘法)

    http://wikioi.com/problem/1281/ 矩阵真是个神奇的东西.. 只要搞出一个矩阵乘法,那么递推式可以完美的用上快速幂,然后使复杂度降到log 真是神奇. 在本题中,应该很快能 ...

  4. codevs 3332 数列 (矩阵乘法)

    /* 裸地矩阵乘法 矩阵很好想的 1 1 0 0 0 1 1 0 0 */ #include<iostream> #include<cstring> #include<c ...

  5. 题解——洛谷P1962 斐波那契数列(矩阵乘法)

    矩阵乘法加速线性递推的典型 大概套路就是先构造一个矩阵\( F \)使得另一初始矩阵\( A \)乘以\( F^{x} \)能够得出第n项 跑的飞快 虽然我也不知道那个矩阵要怎么构造 或许就像我使用了 ...

  6. bzoj 3231: [Sdoi2008]递归数列【矩阵乘法】

    今天真是莫名石乐志 一眼矩阵乘法,但是这个矩阵的建立还是挺有意思的,就是把sum再开一列,建成大概这样 然后记!得!开!long!long!! #include<iostream> #in ...

  7. 【wikioi】1250 Fibonacci数列(矩阵乘法)

    http://wikioi.com/problem/1250/ 我就不说这题有多水了. 0 1 1 1 矩阵快速幂 #include <cstdio> #include <cstri ...

  8. 1250 Fibonacci数列(矩阵乘法快速幂)

    1250 Fibonacci数列  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond       题目描述 Description 定义:f0=f1=1, f ...

  9. codevs 1281 Xn数列 (矩阵乘法)

    /* 再来个题练练手 scanf longlong 有bug....... */ #include<cstdio> #include<iostream> #include< ...

随机推荐

  1. 移动端 slide拖拽

    <html> <head> <meta charset="UTF-8"> <meta name="viewport" ...

  2. IT轮子系列(五)——MVC API 文件上传,总有一款是你需要的

    前言 在对外提供的接口时,也常常需要提供上传文件的.在这篇文章中会描述三种上传方式. 1.第一款,通过Base64字符上传——PostFromBase64Str 首先,定义上传数据模型.对于模型的定义 ...

  3. 更改一个链接的文本、URL 以及 target

    <html> <head> <script type="text/javascript"> function changeLink() { do ...

  4. Storm 提交多个流例程

    1.拓扑(Topology): builder.setBolt(TRANSFORM_BOLT, new TransformationBolt(), 1).shuffleGrouping(MY_SPOU ...

  5. Java编程语言下Selenium 对于下拉框,单选,多选等选择器的操作

    WebElement selector = driver.findElement(By.id("Selector")); Select select = new Select(se ...

  6. Ubuntu系统下配置IP地址方法介绍

    配置IP方式有两种: 1.通过命令直接配置 sudo ifconfig eth0 IP地址 netmask 子网掩码------配置IP地 sudo route add default gw 网关-- ...

  7. Mybatis 系列2

    上篇文章 写了一个Demo简单体现了一下Mybatis的流程.本次,将简单介绍一下Mybatis的配置文件: 上次例子中,我们以 SqlSessionFactoryBuilder 去创建 SqlSes ...

  8. Flask类的属性和方法大全

    Flask Property__class____dict____doc____module__app_ctx_globals_classconfig_classdebugdefault_config ...

  9. 树莓派配置watchdog

    安装watchdog apt install watchdog 编辑/etc/modules,添加bcm2708_wdog 编辑/etc/watchdog.conf watchdog-device = ...

  10. Myeclipse按包装SVN

    最简单步骤:把features和plugins直接放到Myeclipse安装包的dropins中,从新启动eclipse即可 features和plugins下载地址:http://pan.baidu ...