整理自Andrew Ng 的 machine learnig 课程 week1.

目录:

  • 什么是机器学习
  • 监督学习
  • 非监督学习
  • 一元线性回归
    • 模型表示
    • 损失函数
    • 梯度下降算法

1、什么是机器学习

Arthur Samuel不是一个playing checker的高手,但是他编了一个程序,每天和这个程序playing checker,后来这个程序最后变得特别厉害,可以赢很多很厉害的人了。所以Arthur Samuel就给机器学习下了一个比较old,不太正式的定义:

” the field of study that gives the computer the ability to learn without being explicitly programmed “

现代比较正式的一个定义是:

” A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P , if its perfermance at tasks in T as measured by P, improves with experience E  “

也就是说:计算机程序从 ” 做一系列任务T得来的经验E ” 和 “ 测度这个任务做的好不好的表现测度 P “ 中去学习,学习的目标就是,通过这些经验E ,这些任务T做的更好了,做的好不好的评价标准就是P;

以上面Arthur Samuel playing checker的例子来说:

E:Arthur Samuel和程序很多次play checker的经验;

T:playing checker

P:程序在下一次比赛中赢的概率

机器学习问题一般可以分为 ” 监督学习 “ 和 ” 非监督学习 “两类。

2、监督学习

"given data set and already know what our correct output should look like"

对于输入和输出之间的关系我们已经差不多可以有一个思路了

 ” 回归 “ 和 ” 分类 “

回归:结果是连续的,map input to some continuous function (如:预测房价)

分类:结果是离散的,map input to some discrete function (如:预测房价是否大于某个值)

3、非监督学习

” approach problems with little or no ideal what our result should look like “

对于输入和输出之间的关系,我们没有一个概念

” 聚类 “ 和 ” 非聚类 “

聚类:对1000,000中不同的基因聚类,group related to lifespan, height.......

非聚类:鸡尾酒宴会算法,find structure in chaotic environment (比如,在鸡尾酒宴会中各种混杂的声音中识别出某个人的声音或者背景音乐)

4、一元线性回归

模型表示

$x^{(i)}$:输入变量

$y^{(i)}$:输出变量

$(x^{(i)}, y^{(i)})$:一个训练数据

$(x^{(i)}, y^{(i)}); i=1...m$:训练数据集

$X=Y=R$:输入空间和输出空间,这里是一样的

$h_\theta(x)=\theta_0+\theta_1x$

比如以下:

对于监督学习问题:给定训练数据集(x,y),学习一个$h(x):X\rightarrowY$,对于h(x)是y的一个好的预测

损失函数

用于衡量h(x)的accuracy,是h(x)和y的average difference

$J(\theta_0,\theta_1)=\frac{1}{2m}\sum_{i=1}^m(h_\theta(x^{(i)})-y^{(i))^2$

这个函数被称为平方损失函数(square error function / mean square error), 在回归问题中常用于表示损失函数,非回归问题中也会用,比较常用

这里$sum_{i=1}^m(h_\theta(x^{(i)})-y^{(i))^2$ 是损失平方和,$\frac12$是为了以后求导方便加上去的

我们的目标就是找到一个使得损失函数最小的$\theta_0和\theta_1$:

损失函数 visual 1

以下为了展示损失函数,为了方便,让$\theta_0=0$

当$\theta_1=1$时,$J(\theta_1)=0$,在右图绿色叉叉的位置;

当$\theta_1=0.5$时,$J(\theta_1)=~$,大概在右图蓝色叉叉的位置;

当$\theta_1=0$时,$J(\theta_1)=2.~$,大概在右图上y轴的黑色叉叉那里;

基于以上三个点,我们知道$J(\theta_1)$大概就是上右图的样子,当$\theta_1=1$时$J(\theta_1)$最小,左边递减,右边递增;

损失函数 visual 2

对于以上简单的损失函数,我们还可以在二维图上画出来,也比较好理解,但是当维度(变量)大了之后,这种图就不好画了,比如二维:

此时常用等高线图来表示损失函数:

对于以上的训练数据,当$\theta_0=0, \theta_1=360$时,$J(\theta_0, \theta_1)$位于等高线图中红色叉叉的位置;

当$\theta_0, \theta_1$如下左图时,$J(\theta_0, \theta_1)$位于等高线图中绿色叉叉的位置;

当$\theta_0, \theta_1$如下左图时,$J(\theta_0, \theta_1)$位于等高线图中蓝色叉叉的位置,也就是接近最优解的地方,等高线的近似中间位置;

梯度下降算法

那么如何找到最优解呢?梯度下降算法就是一个方法,见以往博客:Gradient Descent

machine learning 之 导论 一元线性回归的更多相关文章

  1. 【Machine Learning】单参数线性回归 Linear Regression with one variable

        最近开始看斯坦福的公开课<Machine Learning>,对其中单参数的Linear Regression(未涉及Gradient Descent)做个总结吧. [设想]    ...

  2. Machine Learning 学习笔记 (1) —— 线性回归与逻辑回归

    本系列文章允许转载,转载请保留全文! [请先阅读][说明&总目录]http://www.cnblogs.com/tbcaaa8/p/4415055.html 1. 梯度下降法 (Gradien ...

  3. 机器学习---用python实现最小二乘线性回归算法并用随机梯度下降法求解 (Machine Learning Least Squares Linear Regression Application SGD)

    在<机器学习---线性回归(Machine Learning Linear Regression)>一文中,我们主要介绍了最小二乘线性回归算法以及简单地介绍了梯度下降法.现在,让我们来实践 ...

  4. Coursera《machine learning》--(2)单变量线性回归(Linear Regression with One Variable)

    本笔记为Coursera在线课程<Machine Learning>中的单变量线性回归章节的笔记. 2.1 模型表示 参考视频: 2 - 1 - Model Representation ...

  5. machine learning 之 多元线性回归

    整理自Andrew Ng的machine learning课程 week2. 目录: 多元线性回归 Multivariates linear regression /MLR Gradient desc ...

  6. 机器学习---最小二乘线性回归模型的5个基本假设(Machine Learning Least Squares Linear Regression Assumptions)

    在之前的文章<机器学习---线性回归(Machine Learning Linear Regression)>中说到,使用最小二乘回归模型需要满足一些假设条件.但是这些假设条件却往往是人们 ...

  7. Machine Learning 算法可视化实现1 - 线性回归

    一.原理和概念 1.回归 回归最简单的定义是,给出一个点集D,用一个函数去拟合这个点集.而且使得点集与拟合函数间的误差最小,假设这个函数曲线是一条直线,那就被称为线性回归:假设曲线是一条二次曲线,就被 ...

  8. 《Machine Learning in Action》—— 浅谈线性回归的那些事

    <Machine Learning in Action>-- 浅谈线性回归的那些事 手撕机器学习算法系列文章已经肝了不少,自我感觉质量都挺不错的.目前已经更新了支持向量机SVM.决策树.K ...

  9. 机器学习---线性回归(Machine Learning Linear Regression)

    线性回归是机器学习中最基础的模型,掌握了线性回归模型,有利于以后更容易地理解其它复杂的模型. 线性回归看似简单,但是其中包含了线性代数,微积分,概率等诸多方面的知识.让我们先从最简单的形式开始. 一元 ...

随机推荐

  1. JavaScript之BOM

    一.什么是BOM? BOM(Browser Object Model)是指浏览器对象模型,它使 JavaScript 有能力与浏览器进行“对话”. 二.Windows对象 Window对象是客户端Ja ...

  2. 云计算之路-阿里云上:3个manager节点异常造成 docker swarm 集群宕机

    今天 11:29 - 11:39 左右,docker swarm 集群 3 个 manager 节点同时出现异常,造成整个集群宕机,由此给您带来很大的麻烦,请您谅解. 受此次故障影响的站点有:博问,闪 ...

  3. JQuery AJAX 全局设置

    现在需要给每个请求都加一个请求头,挨个修改太麻烦.可以用如下方式: $.ajaxSettings.beforeSend= function(request) { request.setRequestH ...

  4. MyBatis映射器元素

     映射器是MyBatis最强大的工具,也是我们使用MyBatis时用的最多的工具,映射器中主要有增删改查四大元素,来满足不同场景的需要: 下面是主要元素的介绍:         select:查询语句 ...

  5. MySQL事务以及隔离级别

    前言: 我一直想不到一个好的标题应该怎么写.我想MySQL的一些重要的内容.我在两次面试中都遇到过的,但直接用MySQL标题好像又不太贴切.干脆就是所写的内容吧. MySQL事务: transacti ...

  6. error:com.mysql.jdbc.exceptions.jdbc4.MySQLIntegrityConstraintViolationException

    问题:同样的代码,只能插入一组值,第二组值插入不了 解决:开始我将app_id作为主键,但很明显,同一个app_id会有不同的index,而同一个index也可能对应不同的app_id,因此只能添加一 ...

  7. Hadoop3.0完全分布式集群安装部署

    1. 配置为1个namenode(master主机),2个datanode(slave1主机+slave2主机)的hadoop集群模式, 在VMWare中构建3台运行Ubuntu的机器作为服务器: 关 ...

  8. javascript DOM操作 节点的遍历

    通过javascript的遍历可以由一个节点来查找它的子节点(childNodes).兄弟节点(nextSibling/previousSibling)和父节点(parentNode). 代码说明: ...

  9. CCF-201803-2 碰撞的小球

    问题描述 数轴上有一条长度为L(L为偶数)的线段,左端点在原点,右端点在坐标L处.有n个不计体积的小球在线段上,开始时所有的小球都处在偶数坐标上,速度方向向右,速度大小为1单位长度每秒.当小球到达线段 ...

  10. css 如何隐藏滚动条

    原理: 把滚动条设为完全透明: /* 设置滚动条的样式 */::-webkit-scrollbar { width: 12px;} /* 滚动槽 */::-webkit-scrollbar-track ...