bzoj3294[Cqoi2011]放棋子 dp+组合+容斥
3294: [Cqoi2011]放棋子
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 755 Solved: 294
[Submit][Status][Discuss]
Description

Input
输入第一行为两个整数n, m, c,即行数、列数和棋子的颜色数。第二行包含c个正整数,即每个颜色的棋子数。所有颜色的棋子总数保证不超过nm。
Output
输出仅一行,即方案总数除以 1,000,000,009的余数。
Sample Input
4 2 2
3 1
Sample Output
8
HINT
N,M<=30 C<=10 总棋子数有大于250的情况
很巧妙的dp,状态的定义很好
首先g[k][i][j]表示第k种颜色占据i行j列的方案
占据i行j列,放的棋子数在[max(i,j),i*j]之间
有i*j个格子,选择a[k]个放置,再减去没有完全占据i行j列的情况
然后f[k][i][j]表示前k种颜色占据i行j列
枚举每种颜色占据几行几列,从前一种颜色转移过来
最后统计ans的时候,考虑前p中颜色占据几行几列再乘上组合数
具体转移的看代码
推荐blog
http://blog.csdn.net/Regina8023/article/details/42584227
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#define ll long long
#define N 35
#define mod 1000000009
using namespace std;
int n,m,p,a[N],c[N*N][N*N];
ll g[N][N][N],f[N][N][N];
int main(){
#ifdef wsy
freopen("data.in","r",stdin);
#else
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
#endif
scanf("%d%d%d",&n,&m,&p);
for(int i=;i<=p;i++)scanf("%d",&a[i]);
for(int i=;i<=n*m;i++)c[i][i]=c[i][]=;
for(int i=;i<=n*m;i++)
for(int j=;j<i;j++)
c[i][j]=(c[i-][j-]+c[i-][j])%mod; for(int k=;k<=p;k++)
for(int i=;i<=n;i++)
for(int j=;j<=m;j++){
if(i*j<a[k]||max(i,j)>a[k])continue;
g[k][i][j]=c[i*j][a[k]];
for(int x=;x<=i;x++)
for(int y=;y<=j;y++)
if((i-x)||(j-y))
g[k][i][j]=(mod+g[k][i][j]-g[k][x][y]*c[i][x]%mod*c[j][y]%mod)%mod;
} f[][][]=;
for(int k=;k<=p;k++)
for(int i=;i<=n;i++)
for(int j=;j<=m;j++){
if(i*j<a[k])continue;
for(int x=;x<i;x++)
for(int y=;y<j;y++)
f[k][i][j]=(f[k][i][j]+(f[k-][x][y]*g[k][i-x][j-y]%mod*c[i][x]%mod*c[j][y]%mod))%mod;
}
ll ans=;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
ans=(ans+f[p][i][j]*c[n][i]%mod*c[m][j]%mod)%mod;
cout<<ans;
return ;
}
bzoj3294[Cqoi2011]放棋子 dp+组合+容斥的更多相关文章
- bzoj千题计划261:bzoj3294: [Cqoi2011]放棋子
http://www.lydsy.com/JudgeOnline/problem.php?id=3294 如果一个颜色的棋子放在了第i行第j列,那这种颜色就会占据第i行第j列,其他颜色不能往这儿放 设 ...
- BZOJ3294: [Cqoi2011]放棋子(计数Dp,组合数学)
题目链接 解题思路: 发现一个性质,如果考虑一个合法的方案可以将行和列都压到一起,也就是说,在占用行数和列数一定的情况下,行列互换是不会影响答案的,那么考虑使用如下方程: $f[i][j][k]$为占 ...
- bzoj3622已经没有什么好害怕的了 dp+组合+容斥(?)
3622: 已经没有什么好害怕的了 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1033 Solved: 480[Submit][Status][ ...
- [CQOI2011]放棋子--DP
题目描述: 输入格式 输入第一行为两个整数n, m, c,即行数.列数和棋子的颜色数.第二行包含c个正整数,即每个颜色的棋子数.所有颜色的棋子总数保证不超过nm.N,M<=30 C<=10 ...
- BZOJ3294: [Cqoi2011]放棋子
Description Input 输入第一行为两个整数n, m, c,即行数.列数和棋子的颜色数.第二行包含c个正整数,即每个颜色的棋子数.所有颜色的棋子总数保证不超过nm. Output 输出 ...
- BZOJ3294 CQOI2011放棋子(动态规划)
可以看做棋子放在某个位置后该种颜色就占领了那一行一列.行列间彼此没有区别. 于是可以设f[i][j][k]表示前k种棋子占领了i行j列的方案数.转移时枚举第k种棋子占领几行几列.注意行列间是有序的,要 ...
- BZOJ.2339.[HNOI2011]卡农(思路 DP 组合 容斥)
题目链接 \(Description\) 有\(n\)个数,用其中的某些数构成集合,求构造出\(m\)个互不相同且非空的集合(\(m\)个集合无序),并满足每个数总共出现的次数为偶数的方案数. \(S ...
- 【BZOJ3294】放棋子(动态规划,容斥,组合数学)
[BZOJ3294]放棋子(动态规划,容斥,组合数学) 题面 BZOJ 洛谷 题解 如果某一行某一列被某一种颜色给占了,那么在考虑其他行的时候可以直接把这些行和这些列给丢掉. 那么我们就可以写出一个\ ...
- 【BZOJ 3294】 3294: [Cqoi2011]放棋子 (DP+组合数学+容斥原理)
3294: [Cqoi2011]放棋子 Description Input 输入第一行为两个整数n, m, c,即行数.列数和棋子的颜色数.第二行包含c个正整数,即每个颜色的棋子数.所有颜色的棋子总数 ...
随机推荐
- JVM启动参数
JVM参数的含义 实例见实例分析 参数名称 含义 默认值 -Xms 初始堆大小 物理内存的1/64(<1GB) 默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,J ...
- Java8-如何构建一个Stream
Stream的创建方式有很多种,除了最常见的集合创建,还有其他几种方式. List转Stream List继承自Collection接口,而Collection提供了stream()方法. List& ...
- 流程控制语句(MySQL/MariaDB )
本文目录:1.BEGIN...END2.true和false3.if结构4.case结构5.loop.leave和iterate6.repeat循环7.while循环 MySQL/MariaDB中的符 ...
- java实现图片压缩
java实现图片压缩 package Test; import java.awt.Image; import java.awt.image.BufferedImage; import java.io. ...
- typescript简介
微软作为编译器狂魔一直有一个心病,就是改良JavaScript这种语法超级烂又很多人用的编程语言,于是TypeScript诞生了 先做个对比吧: TS JS 语法严谨性 严谨 宽松 静态性 静态 ...
- Python内置函数(51)——hasattr
英文文档: hasattr(object, name) The arguments are an object and a string. The result is True if the stri ...
- 使用cxf创建webservice 出现timeOut的问题,设置spring超时时间
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.sp ...
- maven入门(7)maven项目(组件)的坐标
1.为什么要定义Maven坐标 在我们开发Maven项目的时候,需要为其定义适当的坐标,这是Maven强制要求的.在这个基础上,其他Maven项目才能应用该项目生成的构件. 2.Maven坐 ...
- [转]安卓新一代多渠道打包工具Walle 解决渠道包V2签名问题
转自https://www.jianshu.com/p/572b59829a08 为什么要打多个渠道的包? 大家都知道,android应用商店大大小小有几百个,作为一个有志向的app,就需要做到统计各 ...
- Tcl与Design Compiler (一)——前言
已经学习DC的使用有一段时间了,在学习期间,参考了一些书,写了一些总结.我也不把总结藏着掖着了,记录在博客园里面,一方面是记录自己的学习记录,另一方面是分享给大家,希望大家能够得到帮助.参考的书籍有很 ...