[BZOJ]1027 合金(JSOI2007)
不知道该如何评价吧,很神的一道题,就算是10年前的题目也不可小觑啊。
Description
某公司加工一种由铁、铝、锡组成的合金。他们的工作很简单。首先进口一些铁铝锡合金原材料,不同种类的原材料中铁铝锡的比重不同。然后,将每种原材料取出一定量,经过融解、混合,得到新的合金。新的合金的铁铝锡比重为用户所需要的比重。 现在,用户给出了n种他们需要的合金,以及每种合金中铁铝锡的比重。公司希望能够订购最少种类的原材料,并且使用这些原材料可以加工出用户需要的所有种类的合金。
Input
第一行两个整数m和n,分别表示原材料种数和用户需要的合金种数。第2到m + 1行,每行三个实数a, b, c,分别表示铁铝锡在一种原材料中所占的比重。第m + 2到m + n + 1行,每行三个实数a, b, c,分别表示铁铝锡在一种用户需要的合金中所占的比重。
Output
一个整数,表示最少需要的原材料种数。若无解,则输出–1。
Sample Input
10 10
0.1 0.2 0.7
0.2 0.3 0.5
0.3 0.4 0.3
0.4 0.5 0.1
0.5 0.1 0.4
0.6 0.2 0.2
0.7 0.3 0
0.8 0.1 0.1
0.9 0.1 0
1 0 0
0.1 0.2 0.7
0.2 0.3 0.5
0.3 0.4 0.3
0.4 0.5 0.1
0.5 0.1 0.4
0.6 0.2 0.2
0.7 0.3 0
0.8 0.1 0.1
0.9 0.1 0
1 0 0
Sample Output
5
HINT
m, n ≤ 500,a, b, c ≥ 0 且 a + b + c = 1。
Solution
先说一个结论:设v1,v2...vn是n个向量,a1,a2...an是n个未知常数,且a1+a2+...+an=定值d。
那么合成向量V=a1v1+a2v2+...+anvn一定位于向量dv1,dv2...dvn构成的凸包内。
不知道怎么证明的可以先从两个向量的情况开始YY一下,小C就不多做解释了。
所以这题想干啥?三维凸包?仔细一想还不一定是凸包,因为它要求点数最少。
我们发现这个向量实际上是只有两维的,因为确定了两维之后,第三维是完全确定的。
所以就只剩两维了,但还是不能从凸包入手,怎么办?这时我们需要一些窒息操作。
题目要求我们在m个点中求一个点数(边数)最小的多边形,把n个点全部包在内。
这个多边形上的边一定满足所有n个点都在这条边的一侧。
所以找这个多边形就相当于从一个点出发,每次只走n个点都在一侧的边,走最少的边数,回到起点!
所以问题就变成了在有向图上找最短长度的环!最短路径问题!!
m只有500,用Floyd就行,为了拿排名你可以选择Dijkstra,由于边长只有1你甚至可以bfs。
注意一开始要把答案为1和答案为2的情况特判掉。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define INF 0x3FFFFFFF
#define MN 505
#define eps 1e-12
using namespace std;
struct vec
{
double x,y;
friend vec operator-(const vec& a,const vec& b) {return (vec){a.x-b.x,a.y-b.y};}
friend double operator/(const vec& a,const vec& b) {return a.x*b.y-a.y*b.x;}
friend double abs(const vec& a) {return a.x*a.x+a.y*a.y;}
}a[MN],b[MN];
int dis[MN][MN];
int n,m,ans; inline int read()
{
int n=,f=; char c=getchar();
while (c<'' || c>'') {if(c=='-')f=-; c=getchar();}
while (c>='' && c<='') {n=n*+c-''; c=getchar();}
return n*f;
} bool cmp1(const vec& A,const vec& B) {return A.y<B.y || A.y==B.y && A.x<B.x;}
bool check(const vec& A,const vec& B)
{
vec AB=B-A;
for (register int i=;i<=m;++i)
if (AB/(b[i]-A)<-eps) return false;
return true;
} int main()
{
register int i,j,k;
double z;
n=read(); m=read();
for (i=;i<=n;++i) scanf("%lf%lf%lf",&a[i].x,&a[i].y,&z);
for (i=;i<=m;++i) scanf("%lf%lf%lf",&b[i].x,&b[i].y,&z);
for (i=;i<=n;++i)
{
for (j=;j<=m;++j) if (a[i].x!=b[j].x||a[i].y!=b[j].y) break;
if (j>m) return *printf("");
}
sort(a+,a+n+,cmp1);
for (i=;i<n;++i)
for (j=i+;j<=n;++j)
{
for (k=;k<=m;++k)
{
if (fabs((b[k]-a[i])/(a[j]-a[i]))>eps) break;
if (a[i].y!=a[j].y) {if (b[i].y<a[i].y||b[i].y>a[j].y) break;}
else {if (b[i].x<a[i].x||b[i].x>a[j].x) break;}
}
if (k>m) return *printf("");
}
memset(dis,,sizeof(dis));
for (i=;i<=n;++i)
for (j=;j<=n;++j)
if (i!=j&&check(a[i],a[j])) dis[i][j]=;
for (k=;k<=n;++k)
for (i=;i<=n;++i)
for (j=;j<=n;++j)
dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
ans=dis[][];
for (i=;i<=n;++i) if (dis[i][i]>) ans=min(ans,dis[i][i]);
if (ans==dis[][]) return *printf("-1");
printf("%d",ans);
}
Last Word
从计算几何转化为图论模型,这种题目还真是少见啊,转化这种东西没有一定的脑洞还真没法想出来。
[BZOJ]1027 合金(JSOI2007)的更多相关文章
- 【BZOJ 1027】[JSOI2007]合金
[题目链接]:http://www.lydsy.com/JudgeOnline/problem.php?id=1027 [题意] [题解] 因为和为1; 所以只要知道两个属性第三个属性就能用1减出来了 ...
- BZOJ 1027 合金
Description 某公司加工一种由铁.铝.锡组成的合金.他们的工作很简单.首先进口一些铁铝锡合金原材料,不同种类的原材料中铁铝锡的比重不同.然后,将每种原材料取出一定量,经过融解.混合,得到新的 ...
- bzoj 1027 [JSOI2007]合金(计算几何+floyd最小环)
1027: [JSOI2007]合金 Time Limit: 4 Sec Memory Limit: 162 MBSubmit: 2970 Solved: 787[Submit][Status][ ...
- BZOJ 1027 [JSOI2007]合金
1027: [JSOI2007]合金 Time Limit: 4 Sec Memory Limit: 162 MBSubmit: 2605 Solved: 692[Submit][Status][ ...
- [bzoj 1027][JSOI2007]合金(解析几何+最小环)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1027 分析: 首先因为一个合金的和为1,所以考虑2个材料合金能否合成一个需求合金的时候 ...
- BZOJ 1027 JSOI2007 合金 计算几何+Floyd
题目大意:给定一些合金,选择最少的合金,使这些合金能够按比例合成要求的合金 首先这题的想法特别奇异 看这题干怎么会想到计算几何 并且计算几何又怎么会跟Floyd挂边 好强大 首先因为a+b+c=1 所 ...
- BZOJ 1027 [JSOI2007]合金 ——计算几何
我们可以把每一种金属拆成一个二维向量,显然第三维可以计算出来,是无关的. 我们只需要考虑前两维的情况,显然可以构成点集所形成的凸包内. 然后我们枚举两两的情况,然后可以发现如果所有的点都在一侧是可以选 ...
- bzoj 1027: [JSOI2007]合金【凸包+Floyd】
参考:https://www.cnblogs.com/zhuohan123/p/3237246.html 因为一c可以由1-a-b得出,所以删掉c,把a,b抽象成二维平面上的点.首先考虑一个客户需求能 ...
- BZOJ 1027: [JSOI2007]合金 (计算几何+Floyd求最小环)
题解就看这位仁兄的吧-不过代码还是别看他的了- 同样的方法-我200ms,他2000ms. 常数的幽怨- CODE #include <bits/stdc++.h> using names ...
随机推荐
- Linux学习--线程概念
线程 我们知道 ,进程在各自独立的地址空间中运行,进程之间共享数据需要用mmap或者进程间通信机制,本节我们学习如何在一个进程的地址空间中执行多个线程.有些情况需要在一个进程中同时执行多个控制流程,这 ...
- 关于使用栈将一般运算式翻译为后缀表达式并实现三级运算的方法及实例(cpp版)
#include <iostream> #include <stack> #include <vector> #include <string> #de ...
- Python choice() 函数
Python choice() 函数 Python 数字 描述 choice() 方法返回一个列表,元组或字符串的随机项. 语法 以下是 choice() 方法的语法: import random ...
- Android实验报告
实验名称:Android程序设计 实验时间:2017.5.24 实验人员:20162309邢天岳(结对同学20162313苑洪铭) 实验目的:使用android stuidio开发工具进行基本安卓软件 ...
- 自主学习之RxSwift(一) -----Driver
对于RxSwift,我也是初学者,此系列来记录我学习RxSwift的历程! (一) 想必关于Drive大家一定在RxSwift的Demo中看到过,也一定有些不解,抱着一起学习的态度,来了解一下Driv ...
- Binary Tree Xorder Traversal
 * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeN ...
- SUN平台服务器光纤共享存储互斥失败如何恢复数据?
服务器数据恢复故障描述: 服务器最初的设计思路为将两台SPARC SOLARIS系统通过光纤交换机共享同一存储作为CLUSTER使用,正常情况下A服务器工作,当A服务器发生故障宕机后即可将其关机然后开 ...
- System.Reflection名称空间下的程序集类Assembly应用.
利用反射中的程序集类(Assembly--抽象类)动态加载类库(.dll)或者可执行程序(.exe). 优点:①.可以消除if条件的逻辑判断.②.减少内存资源.③.有利于程序扩展. 缺点... 使用静 ...
- VMware网络配置
NAT模式 首先保证虚拟机网卡和主机对接,虚拟机网络连接要和主机在同一网段 1. 控制面板\网络和 Internet\网络连接中配置VMnet8 2. 编辑虚拟机网络配置 此处子网ip需要和Vnet8 ...
- Spring AOP AspectJ
本文讲述使用AspectJ框架实现Spring AOP. 再重复一下Spring AOP中的三个概念, Advice:向程序内部注入的代码. Pointcut:注入Advice的位置,切入点,一般为某 ...