hdu 4630 查询[L,R]区间内任意两个数的最大公约数
No Pain No Game
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 2000 Accepted Submission(s): 851
But you can not kill yourself before you solve this problem:
Given you a sequence of number a1, a2, ..., an.They are also a permutation of 1...n.
You need to answer some queries,each with the following format:
If we chose two number a,b (shouldn't be the same) from interval [l, r],what is the maximum gcd(a, b)? If there's no way to choose two distinct number(l=r) then the answer is zero.
Then follow T test cases.
For each test cases,the first line contains a number n(1 <= n <= 50000).
The second line contains n number a1, a2, ..., an.
The third line contains a number Q(1 <= Q <= 50000) denoting the number of queries.
Then Q lines follows,each lines contains two integer l, r(1 <= l <= r <= n),denote a query.
Sample Input
1
10
8 2 4 9 5 7 10 6 1 3
5
2 10
2 4
6 9
1 4
7 10
Sample Output
5
2
2
4
3
/*
hdu 4630 查询[L,R]区间内任意两个数的最大公约数 给你n个数,m个询问,输出区间[l,r]内的任意两个数的最大公约数 对于每一个数而言,对左右都会造成影响,所以我们考虑把查询按r从小到大排序,遇到r则输出结果
像这样的话我们就能只考虑a[i]与 [1,i-1]之间数的关系
因为是求的最大公约数,所以枚举a[i]的因子,如果发现此因子已经出现过,则在此前因子出现的地方赋值
(因为我们是求[l,r]之间的,并不能保证之前因子出现的位置在此之内),然后更新该因子的位置 hhh-2016-04-05 19:55:32
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <map>
#include <algorithm>
#include <vector>
#include <functional>
#define lson (i<<1)
#define rson ((i<<1)|1)
using namespace std;
const int maxn = 5e5+5;
int pos[maxn];
int a[maxn];
int tans[maxn];
struct node
{
int l,r;
int Max;
int mid()
{
return (l+r)>>1;
}
} tree[maxn<<2]; void push_up(int i)
{
tree[i].Max = max(tree[lson].Max,tree[rson].Max);
} void build(int i,int l,int r)
{
tree[i].l = l,tree[i].r = r;
tree[i].Max=0;
if(l == r)
return ;
int mid = tree[i].mid();
build(lson,l,mid);
build(rson,mid+1,r);
push_up(i);
} void update(int i,int k,int val)
{
if(tree[i].l == tree[i].r && tree[i].l == k)
{
tree[i].Max = max(tree[i].Max,val);
return ;
}
int mid = tree[i].mid();
if(k <= mid)
update(lson,k,val);
else
update(rson,k,val);
push_up(i);
} int query(int i,int l,int r)
{
if(tree[i].l >= l && tree[i].r <= r)
{
return tree[i].Max;
}
int ans = 0;
int mid = tree[i].mid();
if(l <= mid)
ans = max(ans,query(lson,l,r));
if(r > mid)
ans = max(ans,query(rson,l,r));
return ans;
} struct qy
{
int l,r;
int id;
} qry[maxn]; bool cmp(qy a ,qy b)
{
return a.r < b.r;
} int main()
{
int T;
int n;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
build(1,1,n);
memset(pos,-1,sizeof(pos));
for(int i = 1; i <= n; i++)
scanf("%d",&a[i]);
int m;
scanf("%d",&m);
for(int i = 1; i <= m; i++)
{
scanf("%d%d",&qry[i].l,&qry[i].r);
qry[i].id = i;
}
sort(qry+1,qry+1+m,cmp); for(int i = 1,cur = 1; i <= n; i++)
{ for(int j = 1; j*j <= a[i]; j++)
{
if(a[i]%j == 0)
{
if(pos[j] != -1)
update(1,pos[j],j);
if(pos[a[i]/j]!= -1)
update(1,pos[a[i]/j],a[i]/j);
pos[j] = i;
pos[a[i]/j] = i;
}
} while(i == qry[cur].r && cur <= m)
{
tans[qry[cur].id] = query(1,qry[cur].l,qry[cur].r);
cur ++;
}
}
for(int i = 1; i <= m; i++)
{
printf("%d\n",tans[i]);
}
}
return 0;
}
hdu 4630 查询[L,R]区间内任意两个数的最大公约数的更多相关文章
- hdu 4638 树状数组 区间内连续区间的个数(尽可能长)
Group Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Subm ...
- D. Powerful array 离线+莫队算法 给定n个数,m次查询;每次查询[l,r]的权值; 权值计算方法:区间某个数x的个数cnt,那么贡献为cnt*cnt*x; 所有贡献和即为该区间的值;
D. Powerful array time limit per test seconds memory limit per test megabytes input standard input o ...
- CF 给你三个数字L, R, K,问在[L, R]范围内有多少个数字满足它每一位不同数字不超过k个,求出它们的和(数位DP)
题意: 给你三个数字L, R, K,问在[L, R]范围内有多少个数字满足它每一位不同数字不超过k个,求出它们的和 分析:考虑用状态压缩 , 10给位0~9 , 如果之前出现过了某个数字x ,那就拿当 ...
- HDU-1695 GCD(求一个区间内与一个数互质的个数)
题意: 给你一个T,是样例的个数,接下来是五个数l1,r1,l2,r2,k 前四个数代表两个区间(l1,r1),(l2,r2)这个题l1=1,l2=1; 取x1属于(1,r1),x2属于(1,r2) ...
- 谷歌面试题:输入是两个整数数组,他们任意两个数的和又可以组成一个数组,求这个和中前k个数怎么做?
谷歌面试题:输入是两个整数数组,他们任意两个数的和又可以组成一个数组,求这个和中前k个数怎么做? 分析: "假设两个整数数组为A和B,各有N个元素,任意两个数的和组成的数组C有N^2个元素. ...
- HDU 3709 Balanced Number 求区间内的满足是否平衡的数量 (数位dp)
平衡数的定义是指,以某位作为支点,此位的左面(数字 * 距离)之和 与右边相等,距离是指某位到支点的距离; 题意:求区间内满足平衡数的数量 : 分析:很好这又是常见的数位dp , 不过不同的是我们这次 ...
- SQLALchemy如何查询mysql某个区间内的数据
查了下,找到3种方式: 方法一注意时间格式:xxxx-xx-xx 方法二没有‘day’ 方法三的时间格式同方法一 1.result = Jobs.query.filter(Jobs.create_ti ...
- Excel 统计在某个区间内数值的个数
=COUNTIF(A1:A50,"<=1.0E-5")-COUNTIF(A1:A50,"<60")
- js 取任意两个数之间的随机整数
function getRandomInt(min, max) { min = Math.ceil(min); max = Math.floor(max); return Math.floor(Mat ...
随机推荐
- 不高兴的小名 nyoj
不高兴的小明 时间限制:3000 ms | 内存限制:65535 KB 难度:1 描述 小明又出问题了.妈妈认为聪明的小明应该更加用功学习而变的更加厉害,所以小明除了上学之外,还要参加妈 ...
- zookeeper 入门系列-理论基础 – zab 协议
上一章讨论了paxos算法,把paxos推到一个很高的位置.但是,paxos有没有什么问题呢?实际上,paxos还是有其自身的缺点的: 1. 活锁问题.在base-paxos算法中,不存在leader ...
- selenium在页面中多个fream的定位
在做页面元素定位的时候,遇到多fream的页面定位比较困难,需要先去切换到元素所在的fream才能成功定位. 1,切换到目标fream: driver.switch_to.frame('freamID ...
- 剑指offer-数据流中的中位数
题目描述 如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值.如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值. ...
- Windows用户模式下注入方式总结
注入技术在病毒木马.游戏.打补丁等编程中应用很广泛,学习该技术不仅能帮助理解Windows工作原理,还能对病毒木马技术手段有更加深刻的理解,下面我们了解下各种注入方式吧. 一.DLL注入 在注入技术中 ...
- istio入门(01)istio的优势在哪里?
Istio能做什么?Istio 试图解决微服务实施后面临的问题.Istio 提供了一个完整的解决方案,对整个服务网格行为洞察和操作控制,以满足微服务应用程序的多样化需求. Istio在服务网络中提供了 ...
- 单点登录实现机制:web-sso
参考链接,感谢作者:https://zm10.sm-tc.cn/?src=l4uLj8XQ0IiIiNGckZ2TkJiM0ZyQktCZlo2Mi5uNmp6S0I/QysrJyszPztGXi5K ...
- ELK学习总结(4-2)关于导入数据
用REST API的_bulk来批量插入,可以达到5到10w条每秒 把数据写进json文件,然后再通过批处理,执行文件插入数据: 1.先定义一定格式的json文件,文件不能过大,过大会报错 2.后用c ...
- 离线Chrome插件安装文件(crx)的安装方法
离线Chrome插件安装文件(crx)的安装方法 一.正常安装方法 1.开发谷歌浏览器,设置->扩展程序 在打开的谷歌浏览器的扩展管理器中用户可以看到一些已经安装程序的Chrome插件,或者一个 ...
- 用Jmeter实现SQLServer数据库的增删查改
1.添加线程组 Jmeter性能测试,最重要的就是线程组了,线程组相当于用户活动 2.添加JDBC Connection Configuration Database URL:jdbc:sqlserv ...