数论:px+py 不能表示的最大数为pq-p-q的证明
对于互质的两个数p,q,px+py 不能表示的最大数为pq-p-q.
证明:
先证:pq-p-q不能被px+py表示.
假设pq-p-q可以被px+py表示
那么 px+py=pq-p-q
p(x+1)+q(y+1)=pq
-> q|x+1 p|y+1
很明显x+1>=q
p(x+1)>=pq 矛盾
所以pq-p-q不能被px+py表示.
再证:大于pq-p-q的数一定可以用px+qy表示(x>=0 y>=0)
(p-1)(q-1)=pq-p-q+1
对于n>pq-q-p即n>=(q-1)(p-1)
gcd(p,q)=1
对于z<min{p,q}存在a,b使得ap+bq=z
不妨设a>0>b,显然a>0
那么如果a>q,取a1=a-q,b1=b+p
那么有a1*p+b1*q=z.
如果a1>q,可以继续以得到
Ap+Bq=z,且0<|A|<q,0<|B|<p
pq-p-q=(p-1)q-q=(q-1)p-p
对于n>pq-q-p
n=pq-q-p+k*min{p,q}+r
r<z<min{p,q}
那么取A,B
Ap+Bq=r,且0<|A|<q,0<|B|<p
不妨设A>0
n=pq-q-p+k*min{p,q}+r
=(q-1)p-p+k*min{p,q}+Ap+Bq
=(A-1)p+(B+q-1)p+k*min{p,q}
其中(A-1),(B+q-1)>=0
那么无论min{p,q}是p还是q,都有
对于n>pq-q-p,都可以表示成px+qy
数论:px+py 不能表示的最大数为pq-p-q的证明的更多相关文章
- <数论相关>欧几里得与拓展欧几里得证明及应用
欧几里得算法 欧几里得算法的复杂度为O(log(n)),是一个非常高效的求最大公约数算法. 在这里不证明欧几里得算法的复杂度,有兴趣的可以访问以下链接:http://blog.sina.com.cn/ ...
- 洛谷P2737 [USACO4.1]麦香牛块Beef McNuggets
P2737 [USACO4.1]麦香牛块Beef McNuggets 13通过 21提交 题目提供者该用户不存在 标签USACO 难度普及+/提高 提交 讨论 题解 最新讨论 暂时没有讨论 题目描 ...
- HDU - 1175 bfs
思路:d[x][y][z]表示以z方向走到(x, y)的转弯次数. 如果用优先队列会超时,因为加入队列的节点太多,无用的节点不能及时出队,会造成MLE,用单调队列即可. AC代码 #include & ...
- UVA1600 状态BFS
刚开是我用了一种很笨的bfs过掉的,后来看到原来还可以三维带状态BFS,觉得是一个不错的思路. d[x][y][k]表示坐标位于(x,y)经过K个障碍到达时的最短路径,当然如果(x,y)处的数字是0就 ...
- BFS算法入门--POJ3984
迷宫问题–POJ3984 Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 22008 Accepted: 12848 Descri ...
- [USACO4.1]麦香牛块Beef McNuggets By cellur925
题目描述 农夫布朗的奶牛们正在进行斗争,因为它们听说麦当劳正在考虑引进一种新产品:麦香牛块.奶牛们正在想尽一切办法让这种可怕的设想泡汤.奶牛们进行斗争的策略之一是“劣质的包装”.“看,”奶牛们说,“如 ...
- NOIP 考前研究
NOIP 2017 试题研究 D1T1 小凯的疑惑 (45 min) 看到题面,大概是推数学公式. 先打暴力表,观察 \(a,b\) 与 \(n\) 的关系.猜想 \(a×b−a−b\). 引理:对于 ...
- 瓦片切图工具gdal2tiles.py改写为纯c++版本
gdal2tiles.py是GDAL库中用于生成TMS瓦片的python代码,支持谷歌墨卡托EPSG:3857与经纬度EPSG:4326两种瓦片,输出png格式图像. gdal2tiles.py Mo ...
- 瓦片切图工具gdal2tiles.py改写为纯c++版本(二)
python这么火,C++/C#的程序员都生存不下去了,为啥还要干把python转写成c++的这种反动的事? 项目需要呗... gdal2tiles.py文件中有两个类是计算全球墨卡托与WGS84两种 ...
随机推荐
- vue2 前端搜索实现
项目数据少的时候,搜索这样的小事情就要交给咱们前端来做了,重要声明,适用于小项目!!!!! 其实原理很简单,小demo是做搜索市区名称或者按照排名搜索. <div> <input t ...
- 一个毕生难忘的BUG
记得以前接手过一个Java项目,服务器程序,直接让Jar在linux上跑的那种, 这个项目由两个web服务组成,也就是两条Java进程,主进程 xxx.jar,辅助进程 xxx_helper.jar. ...
- 织梦cms网上复制图片不可用的解决方法
背景描述: 织梦cms采集图片集时, 需要使用织梦cms提供的"网上复制图片"的功能, 好像我这里这个功能一直不可用, 今天下定决心研究了下源代码并进行了适当修改, 将我的修改提供 ...
- 08-TypeScript中的类
类的概念通常是在后端开发中实现的思想,比如C#.C++或Java,传统的JavaScript开发通过使用原型模式来模拟类的功能.在TypeScript中,天生就是支持类 的,可以让前端的开发更加具有面 ...
- Ubuntu Desktop 16.04 LTS 下成功配置Jupyter的两个python内核版本(2.7x,3.5x)
Ubuntu Desktop 16.04 LTS 安装好系统默认就有python两个不同版本(2.7.12和3.5.2) 现在来熟悉一下jupyter的对python这两个不同python版本的内核 ...
- Windows Powershell脚本执行
在cmd下执行powershell进入shell模式: 变量定义:$i = 10 $a = ifconfig | findstr "192" Windows下的命令都可以执行如: ...
- js前端对后台数据的获取,如果是汉字则需要添上引号
js前端对后台数据的获取,如果是汉字则需要添上引号
- 深度爬取之rules
深度爬取之rules CrawlSpider使用rules来决定爬虫的爬取规则,并将匹配后的url请求提交给引擎.所以在正常情况下,CrawlSpider不需要单独手动返回请求了. 在rules中包含 ...
- 图数据库orientDB(1-2)例子
http://gog.orientdb.com/index.html#/infotab 小朱25岁,出生在教师家庭并且有个姐姐小田,他现在奋斗在帝都. 那么SQL是这样滴!!! CREATE VER ...
- python学习之路01
python自己也自学过一段时间了,看过视频,也买过几本基础的书来看,目前为止对于一些简单的代码还是可以看懂,但是自己总是觉得缺少些什么,可能是缺少系统化的学习,也可能是缺少实际项目经验,对于这些缺少 ...