数论:px+py 不能表示的最大数为pq-p-q的证明
对于互质的两个数p,q,px+py 不能表示的最大数为pq-p-q.
证明:
先证:pq-p-q不能被px+py表示.
假设pq-p-q可以被px+py表示
那么 px+py=pq-p-q
p(x+1)+q(y+1)=pq
-> q|x+1 p|y+1
很明显x+1>=q
p(x+1)>=pq 矛盾
所以pq-p-q不能被px+py表示.
再证:大于pq-p-q的数一定可以用px+qy表示(x>=0 y>=0)
(p-1)(q-1)=pq-p-q+1
对于n>pq-q-p即n>=(q-1)(p-1)
gcd(p,q)=1
对于z<min{p,q}存在a,b使得ap+bq=z
不妨设a>0>b,显然a>0
那么如果a>q,取a1=a-q,b1=b+p
那么有a1*p+b1*q=z.
如果a1>q,可以继续以得到
Ap+Bq=z,且0<|A|<q,0<|B|<p
pq-p-q=(p-1)q-q=(q-1)p-p
对于n>pq-q-p
n=pq-q-p+k*min{p,q}+r
r<z<min{p,q}
那么取A,B
Ap+Bq=r,且0<|A|<q,0<|B|<p
不妨设A>0
n=pq-q-p+k*min{p,q}+r
=(q-1)p-p+k*min{p,q}+Ap+Bq
=(A-1)p+(B+q-1)p+k*min{p,q}
其中(A-1),(B+q-1)>=0
那么无论min{p,q}是p还是q,都有
对于n>pq-q-p,都可以表示成px+qy
数论:px+py 不能表示的最大数为pq-p-q的证明的更多相关文章
- <数论相关>欧几里得与拓展欧几里得证明及应用
欧几里得算法 欧几里得算法的复杂度为O(log(n)),是一个非常高效的求最大公约数算法. 在这里不证明欧几里得算法的复杂度,有兴趣的可以访问以下链接:http://blog.sina.com.cn/ ...
- 洛谷P2737 [USACO4.1]麦香牛块Beef McNuggets
P2737 [USACO4.1]麦香牛块Beef McNuggets 13通过 21提交 题目提供者该用户不存在 标签USACO 难度普及+/提高 提交 讨论 题解 最新讨论 暂时没有讨论 题目描 ...
- HDU - 1175 bfs
思路:d[x][y][z]表示以z方向走到(x, y)的转弯次数. 如果用优先队列会超时,因为加入队列的节点太多,无用的节点不能及时出队,会造成MLE,用单调队列即可. AC代码 #include & ...
- UVA1600 状态BFS
刚开是我用了一种很笨的bfs过掉的,后来看到原来还可以三维带状态BFS,觉得是一个不错的思路. d[x][y][k]表示坐标位于(x,y)经过K个障碍到达时的最短路径,当然如果(x,y)处的数字是0就 ...
- BFS算法入门--POJ3984
迷宫问题–POJ3984 Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 22008 Accepted: 12848 Descri ...
- [USACO4.1]麦香牛块Beef McNuggets By cellur925
题目描述 农夫布朗的奶牛们正在进行斗争,因为它们听说麦当劳正在考虑引进一种新产品:麦香牛块.奶牛们正在想尽一切办法让这种可怕的设想泡汤.奶牛们进行斗争的策略之一是“劣质的包装”.“看,”奶牛们说,“如 ...
- NOIP 考前研究
NOIP 2017 试题研究 D1T1 小凯的疑惑 (45 min) 看到题面,大概是推数学公式. 先打暴力表,观察 \(a,b\) 与 \(n\) 的关系.猜想 \(a×b−a−b\). 引理:对于 ...
- 瓦片切图工具gdal2tiles.py改写为纯c++版本
gdal2tiles.py是GDAL库中用于生成TMS瓦片的python代码,支持谷歌墨卡托EPSG:3857与经纬度EPSG:4326两种瓦片,输出png格式图像. gdal2tiles.py Mo ...
- 瓦片切图工具gdal2tiles.py改写为纯c++版本(二)
python这么火,C++/C#的程序员都生存不下去了,为啥还要干把python转写成c++的这种反动的事? 项目需要呗... gdal2tiles.py文件中有两个类是计算全球墨卡托与WGS84两种 ...
随机推荐
- mongodb 高级操作
聚合 aggregate 聚合(aggregate)主要用于计算数据,类似sql中的sum().avg() 语法 db.集合名称.aggregate([{管道:{表达式}}]) 管道 管道在Unix和 ...
- 前端之bootstrap模态框
简介:模态框(Modal)是覆盖在父窗体上的子窗体.通常,目的是显示来自一个单独的源的内容,可以在不离开父窗体的情况下有一些互动.子窗体可提供信息.交互等. Modal简介 Modal实现弹出表单 M ...
- HP DL380服务器RAID信息丢失数据恢复方法和数据恢复过程分享
[数据恢复故障描述] 客户服务器属于HP品牌DL380系列,存储是由6块73GB SAS硬盘组成的RAID5,操作系统是WINDOWS 2003 SERVER,主要作为企业部门内部的文件服务器来 ...
- css的内容
块级元素和行内元素的区别: 1. 行内元素部不能够设置宽度和高度.行内元素的宽度和高度是标签内容的宽度和高度.块级元素可以设置宽度和高度. 2. 块级元素会独占一行.而行内元素却部能够独占一行,只能和 ...
- Centos6.7下面配置vim及其插件
Vim是在vi的基础上升级而来的,比vi更强大,提供代码补全,编译功能 [4]vim Vim是从 vi 发展出来的一个文本编辑器.代码补完.编译及错误跳转等方便编程的功能特别丰富,在程序员中被广泛使用 ...
- JavaScript Cookie使用实例
# Session-Cookie // 利用Cookie防止在1分钟内多次提交: function SetCookie (name, value) { var Days = 30; var exp ...
- NHibernate从入门到精通系列(3)——第一个NHibernate应用程序
内容摘要 准备工作 开发流程 程序开发 一.准备工作 1.1开发环境 开发工具:VS2008以上,我使用的是VS2010 数据库:任意关系型数据库,我使用的是SQL Server 2005 Expre ...
- java专业术语
java的(PO,VO,TO,BO,DAO,POJO)解释 PO(persistant object) 持久对象 在o/r映射的时候出现的概念,如果没有o/r映射,没有这个概念存在了.通常对应数据模型 ...
- CentOS ping www.baidu.com 报错 name or service not know
今天尝试安装了centos系统 玩一玩 刚刚装好的操作系统 ping www.baidu.com的时候 报出 name or service not known 查了好多资料,都没有很好的解决 最后 ...
- layer ui插件显示tips时,修改字体颜色
今天做调查问卷,又遇到一个蛋疼小问题,记录下. 调查问卷有很多选项是要求必填的,如果不填的话,需要给出友好的提示.用的如下组件:http://layer.layui.com/ 1.之前一直默认用的: ...