[USACO 12DEC]Running Away From the Barn
Description
It's milking time at Farmer John's farm, but the cows have all run away! Farmer John needs to round them all up, and needs your help in the search.
FJ's farm is a series of N (1 <= N <= 200,000) pastures numbered 1...N connected by N - 1 bidirectional paths. The barn is located at pasture 1, and it is possible to reach any pasture from the barn.
FJ's cows were in their pastures this morning, but who knows where they ran to by now. FJ does know that the cows only run away from the barn, and they are too lazy to run a distance of more than L. For every pasture, FJ wants to know how many different pastures cows starting in that pasture could have ended up in.
Note: 64-bit integers (int64 in Pascal, long long in C/C++ and long in Java) are needed to store the distance values.
给出以1号点为根的一棵有根树,问每个点的子树中与它距离小于等于l的点有多少个。
Input
Line 1: 2 integers, N and L (1 <= N <= 200,000, 1 <= L <= 10^18)
- Lines 2..N: The ith line contains two integers p_i and l_i. p_i (1 <= p_i < i) is the first pasture on the shortest path between pasture i and the barn, and l_i (1 <= l_i <= 10^12) is the length of that path.
Output
- Lines 1..N: One number per line, the number on line i is the number pastures that can be reached from pasture i by taking roads that lead strictly farther away from the barn (pasture 1) whose total length does not exceed L.
Sample Input
4 5
1 4
2 3
1 5
Sample Output
3
2
1
1
Hint
Cows from pasture 1 can hide at pastures 1, 2, and 4.
Cows from pasture 2 can hide at pastures 2 and 3.
Pasture 3 and 4 are as far from the barn as possible, and the cows can hide there.
题解
简要来说,左偏树
具体思想是:先$Dfs$求出根节点到各个节点的距离,再按逆$Dfs$时间戳顺序进行操作(为了使得处理的当前节点的所有子节点均被处理过,至于为何不正向,就不解释了)
建大根堆,每次做完合并操作后,将不可行的边从堆中弹出(即堆顶所表示的点到当前点的距离$>L$(同时以操作顺序为前提的条件下必有“相距距离=两点到根节点的距离差”))
另一个需要解决的问题就是如何求解,我们可以按逆$Dfs$序模拟一个回溯过程:将所以$pop$掉的值和其子节点的值累加,再相减即可。
#include<cmath>
#include<queue>
#include<stack>
#include<ctime>
#include<cstdio>
#include<string>
#include<cstdlib>
#include<iostream>
#include<algorithm>
using namespace std;
const long long N=;
struct tt
{
long long cost,next,to;
}edge[*N+];//保存边的信息
long long path[N+],top;
struct node
{
long long key,dist;
node *l,*r;
long long ldist() {return l ? l->dist:-;}
long long rdist() {return r ? r->dist:-;}
}T[N+],*root[N+];//T[i]表示节点i的相关信息;root[i]表示序号为i的节点所在堆的根的地址
long long n,l,a,b;
long long remain[N+],tail,Rank[N+];//remain[]表示逆Dfs顺序,tail表示remain[]的大小;Rank[]表示Bfs序
long long popnum[N+],cnt[N+];//popnum[i]保存在i节点时,弹出元素的数量 cnt[i]表示以i为根,其子树节点数量(不含根节点)
void Add(long long x,long long y,long long cost);
void Dfs(long long x);
node* Merge(node* a,node* b);
int main()
{
scanf("%lld%lld",&n,&l);
for (long long i=;i<=n;i++)
{
scanf("%lld%lld",&a,&b);
Add(a,i,b);
Add(i,a,b); }//连双向边,正向用于Dfs用,逆向用于求解用 Rank[]=;
Dfs();
for (long long i=;i<=tail;i++)
{
for (long long j=path[remain[i]];j;j=edge[j].next)
{
if (Rank[remain[i]]==Rank[edge[j].to]+)//找到前驱节点
{
root[edge[j].to]=Merge(root[remain[i]],root[edge[j].to]);//将当前节点构成的堆并入前驱节点
while(root[edge[j].to]->key-T[edge[j].to].key>l)//弹出
{
popnum[edge[j].to]++;
root[edge[j].to]=Merge(root[edge[j].to]->l,root[edge[j].to]->r);
}
}
}
}
for (long long i=;i<=tail;i++) //对最终答案数据的处理
{
for (long long j=path[remain[i]];j;j=edge[j].next)
{
if (Rank[remain[i]]==Rank[edge[j].to]+)
{
cnt[edge[j].to]+=cnt[remain[i]]+;
popnum[edge[j].to]+=popnum[remain[i]];
}
}
}
for (long long i=;i<=n;i++) printf("%lld\n",cnt[i]+-popnum[i]);
return ;
}
void Add(long long x,long long y,long long cost)
{
edge[++top].to=y;
edge[top].cost=cost;
edge[top].next=path[x];
path[x]=top;
}
void Dfs(long long x)
{
root[x]=x+T;
for (long long i=path[x];i;i=edge[i].next) if (!Rank[edge[i].to])
{
Rank[edge[i].to]=Rank[x]+;
T[edge[i].to].key=T[x].key+edge[i].cost;//key保存的是根节点到该点的距离
Dfs(edge[i].to);
}
remain[++tail]=x;
}
node* Merge(node* a,node* b)
{
if (!a||!b) return a ? a:b;
if (a->key<b->key) swap(a,b);
a->r=Merge(a->r,b);
if (a->ldist()<a->rdist()) swap(a->l,a->r);
a->dist=a->rdist()+;
return a;
}
[USACO 12DEC]Running Away From the Barn的更多相关文章
- BZOJ 3011: [Usaco2012 Dec]Running Away From the Barn( dfs序 + 主席树 )
子树操作, dfs序即可.然后计算<=L就直接在可持久化线段树上查询 -------------------------------------------------------------- ...
- BZOJ_3011_[Usaco2012 Dec]Running Away From the Barn _可并堆
BZOJ_3011_[Usaco2012 Dec]Running Away From the Barn _可并堆 Description 给出以1号点为根的一棵有根树,问每个点的子树中与它距离小于l的 ...
- 【BZOJ3011】[Usaco2012 Dec]Running Away From the Barn 可并堆
[BZOJ3011][Usaco2012 Dec]Running Away From the Barn Description It's milking time at Farmer John's f ...
- USACO Running Away From the Barn /// 可并堆 左偏树维护大顶堆
题目大意: 给出以1号点为根的一棵有根树,问每个点的子树中与它距离小于等于m的点有多少个 左偏树 https://blog.csdn.net/pengwill97/article/details/82 ...
- [Usaco2012 Dec]Running Away From the Barn
题目描述 给出以1号点为根的一棵有根树,问每个点的子树中与它距离小于等于l的点有多少个. 输入格式 Line 1: 2 integers, N and L (1 <= N <= 200,0 ...
- [BZOJ3011][Usaco2012 Dec]Running Away From the Barn
题意 给出一棵以1为根节点树,求每个节点的子树中到该节点距离<=l的节点的个数 题解 方法1:倍增+差分数组 首先可以很容易的转化问题,考虑每个节点对哪些节点有贡献 即每次对于一个节点,找到其第 ...
- USACO 2008 Running(贝茜的晨练)
[题解] 动态规划,dp[i][j]表示第i分钟疲劳度为j的最长距离. [代码] #include <iostream> #include <cstdlib> #include ...
- 洛谷P1353 USACO 跑步 Running
题目 一道入门的dp,首先要先看懂题目要求. 容易得出状态\(dp[i][j]\)定义为i时间疲劳度为j所得到的最大距离 有两个坑点,首先疲劳到0仍然可以继续疲劳. 有第一个方程: \(dp[i][0 ...
- bzoj3011 [Usaco2012 Dec]Running Away From the Barn 左偏树
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=3011 题解 复习一下左偏树板子. 看完题目就知道是左偏树了. 结果这个板子还调了好久. 大概已 ...
随机推荐
- 第十四,十五周PTA作业
1.第十四周part1 7-3 #include<stdio.h> int main() { int n; scanf("%d",&n); int a[n]; ...
- Software Engineering-HW2
title: Software Engineering-HW2 date: 2017-09-21 10:35:47 tags: HW --- 题目描述 从<构建之法>第一章的 " ...
- 冲刺NO.8
Alpha冲刺第八天 站立式会议 项目进展 项目稳步进行,项目的基础部分如基本信息管理,信用信息管理等部分已相对比较完善. 问题困难 技术困难在短期内很难发生质的变化,而本项目由于选择了队员不太熟悉的 ...
- python day1 基本语法作业
一.过7 start =1 while start<=10: if start !=7: print(start) start +=1 二.100以内的和 sum = 0 start = 1 w ...
- Linux 帳號管理與 ACL 權限設定
1. Linux 的账号与群组1.1 使用者识别: UID 与 GID1.2 使用者账号:/etc/passwd, /etc/shadow1.3 关于群组: 有效与初始群组. groups, newg ...
- 16-TypeScript装饰器模式
在客户端脚本中,有一个类通常有一个方法需要执行一些操作,当我们需要扩展新功能,增加一些操作代码时,通常需要修改类中方法的代码,这种方式违背了开闭的原则. 装饰器模式可以动态的给类增加一些额外的职责.基 ...
- lodash源码分析之获取数据类型
所有的悲伤,总会留下一丝欢乐的线索,所有的遗憾,总会留下一处完美的角落,我在冰峰的深海,寻找希望的缺口,却在惊醒时,瞥见绝美的阳光! --几米 本文为读 lodash 源码的第十八篇,后续文章会更新到 ...
- Mego(07) - 关系配置
这个是本框架的重要功能,该关系就是指对象中的复杂对象或集合属性,该关系与EF中的关系是有区别的.EF中强调关系的成对出现,这是由于数据库关系的思想决定的.然而Mego更接近与对象化逻辑,我们只关心当前 ...
- sql优化基础篇
优化的步骤: 0.先sql运行看看是否真的很慢,注意设置SQL_NO_CACHE 1.where条件单表查,锁定最小返回记录表.这句话的意思是把查询语句的where都应用到表中返回的记录数最小的表开始 ...
- 新概念英语(1-141)Sally's first train ride
Lesson 141 Sally's first train ride 萨莉第一交乘火车旅行 Listen to the tape then answer this question. Why was ...