[USACO 12DEC]Running Away From the Barn
Description
It's milking time at Farmer John's farm, but the cows have all run away! Farmer John needs to round them all up, and needs your help in the search.
FJ's farm is a series of N (1 <= N <= 200,000) pastures numbered 1...N connected by N - 1 bidirectional paths. The barn is located at pasture 1, and it is possible to reach any pasture from the barn.
FJ's cows were in their pastures this morning, but who knows where they ran to by now. FJ does know that the cows only run away from the barn, and they are too lazy to run a distance of more than L. For every pasture, FJ wants to know how many different pastures cows starting in that pasture could have ended up in.
Note: 64-bit integers (int64 in Pascal, long long in C/C++ and long in Java) are needed to store the distance values.
给出以1号点为根的一棵有根树,问每个点的子树中与它距离小于等于l的点有多少个。
Input
Line 1: 2 integers, N and L (1 <= N <= 200,000, 1 <= L <= 10^18)
- Lines 2..N: The ith line contains two integers p_i and l_i. p_i (1 <= p_i < i) is the first pasture on the shortest path between pasture i and the barn, and l_i (1 <= l_i <= 10^12) is the length of that path.
Output
- Lines 1..N: One number per line, the number on line i is the number pastures that can be reached from pasture i by taking roads that lead strictly farther away from the barn (pasture 1) whose total length does not exceed L.
Sample Input
4 5
1 4
2 3
1 5
Sample Output
3
2
1
1
Hint
Cows from pasture 1 can hide at pastures 1, 2, and 4.
Cows from pasture 2 can hide at pastures 2 and 3.
Pasture 3 and 4 are as far from the barn as possible, and the cows can hide there.
题解
简要来说,左偏树
具体思想是:先$Dfs$求出根节点到各个节点的距离,再按逆$Dfs$时间戳顺序进行操作(为了使得处理的当前节点的所有子节点均被处理过,至于为何不正向,就不解释了)
建大根堆,每次做完合并操作后,将不可行的边从堆中弹出(即堆顶所表示的点到当前点的距离$>L$(同时以操作顺序为前提的条件下必有“相距距离=两点到根节点的距离差”))
另一个需要解决的问题就是如何求解,我们可以按逆$Dfs$序模拟一个回溯过程:将所以$pop$掉的值和其子节点的值累加,再相减即可。
#include<cmath>
#include<queue>
#include<stack>
#include<ctime>
#include<cstdio>
#include<string>
#include<cstdlib>
#include<iostream>
#include<algorithm>
using namespace std;
const long long N=;
struct tt
{
long long cost,next,to;
}edge[*N+];//保存边的信息
long long path[N+],top;
struct node
{
long long key,dist;
node *l,*r;
long long ldist() {return l ? l->dist:-;}
long long rdist() {return r ? r->dist:-;}
}T[N+],*root[N+];//T[i]表示节点i的相关信息;root[i]表示序号为i的节点所在堆的根的地址
long long n,l,a,b;
long long remain[N+],tail,Rank[N+];//remain[]表示逆Dfs顺序,tail表示remain[]的大小;Rank[]表示Bfs序
long long popnum[N+],cnt[N+];//popnum[i]保存在i节点时,弹出元素的数量 cnt[i]表示以i为根,其子树节点数量(不含根节点)
void Add(long long x,long long y,long long cost);
void Dfs(long long x);
node* Merge(node* a,node* b);
int main()
{
scanf("%lld%lld",&n,&l);
for (long long i=;i<=n;i++)
{
scanf("%lld%lld",&a,&b);
Add(a,i,b);
Add(i,a,b); }//连双向边,正向用于Dfs用,逆向用于求解用 Rank[]=;
Dfs();
for (long long i=;i<=tail;i++)
{
for (long long j=path[remain[i]];j;j=edge[j].next)
{
if (Rank[remain[i]]==Rank[edge[j].to]+)//找到前驱节点
{
root[edge[j].to]=Merge(root[remain[i]],root[edge[j].to]);//将当前节点构成的堆并入前驱节点
while(root[edge[j].to]->key-T[edge[j].to].key>l)//弹出
{
popnum[edge[j].to]++;
root[edge[j].to]=Merge(root[edge[j].to]->l,root[edge[j].to]->r);
}
}
}
}
for (long long i=;i<=tail;i++) //对最终答案数据的处理
{
for (long long j=path[remain[i]];j;j=edge[j].next)
{
if (Rank[remain[i]]==Rank[edge[j].to]+)
{
cnt[edge[j].to]+=cnt[remain[i]]+;
popnum[edge[j].to]+=popnum[remain[i]];
}
}
}
for (long long i=;i<=n;i++) printf("%lld\n",cnt[i]+-popnum[i]);
return ;
}
void Add(long long x,long long y,long long cost)
{
edge[++top].to=y;
edge[top].cost=cost;
edge[top].next=path[x];
path[x]=top;
}
void Dfs(long long x)
{
root[x]=x+T;
for (long long i=path[x];i;i=edge[i].next) if (!Rank[edge[i].to])
{
Rank[edge[i].to]=Rank[x]+;
T[edge[i].to].key=T[x].key+edge[i].cost;//key保存的是根节点到该点的距离
Dfs(edge[i].to);
}
remain[++tail]=x;
}
node* Merge(node* a,node* b)
{
if (!a||!b) return a ? a:b;
if (a->key<b->key) swap(a,b);
a->r=Merge(a->r,b);
if (a->ldist()<a->rdist()) swap(a->l,a->r);
a->dist=a->rdist()+;
return a;
}
[USACO 12DEC]Running Away From the Barn的更多相关文章
- BZOJ 3011: [Usaco2012 Dec]Running Away From the Barn( dfs序 + 主席树 )
子树操作, dfs序即可.然后计算<=L就直接在可持久化线段树上查询 -------------------------------------------------------------- ...
- BZOJ_3011_[Usaco2012 Dec]Running Away From the Barn _可并堆
BZOJ_3011_[Usaco2012 Dec]Running Away From the Barn _可并堆 Description 给出以1号点为根的一棵有根树,问每个点的子树中与它距离小于l的 ...
- 【BZOJ3011】[Usaco2012 Dec]Running Away From the Barn 可并堆
[BZOJ3011][Usaco2012 Dec]Running Away From the Barn Description It's milking time at Farmer John's f ...
- USACO Running Away From the Barn /// 可并堆 左偏树维护大顶堆
题目大意: 给出以1号点为根的一棵有根树,问每个点的子树中与它距离小于等于m的点有多少个 左偏树 https://blog.csdn.net/pengwill97/article/details/82 ...
- [Usaco2012 Dec]Running Away From the Barn
题目描述 给出以1号点为根的一棵有根树,问每个点的子树中与它距离小于等于l的点有多少个. 输入格式 Line 1: 2 integers, N and L (1 <= N <= 200,0 ...
- [BZOJ3011][Usaco2012 Dec]Running Away From the Barn
题意 给出一棵以1为根节点树,求每个节点的子树中到该节点距离<=l的节点的个数 题解 方法1:倍增+差分数组 首先可以很容易的转化问题,考虑每个节点对哪些节点有贡献 即每次对于一个节点,找到其第 ...
- USACO 2008 Running(贝茜的晨练)
[题解] 动态规划,dp[i][j]表示第i分钟疲劳度为j的最长距离. [代码] #include <iostream> #include <cstdlib> #include ...
- 洛谷P1353 USACO 跑步 Running
题目 一道入门的dp,首先要先看懂题目要求. 容易得出状态\(dp[i][j]\)定义为i时间疲劳度为j所得到的最大距离 有两个坑点,首先疲劳到0仍然可以继续疲劳. 有第一个方程: \(dp[i][0 ...
- bzoj3011 [Usaco2012 Dec]Running Away From the Barn 左偏树
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=3011 题解 复习一下左偏树板子. 看完题目就知道是左偏树了. 结果这个板子还调了好久. 大概已 ...
随机推荐
- Django--基本篇:项目结构与设计模式(MVC)
Django在项目开发中有着结构清晰.层次明显.容易编写理解查阅demo的优点,那么我们来个小案例具体看看. 一.项目结构简析: 我们按照上一篇中的开发流程步骤创建一个新项目myblog,项目下 ...
- Week02-Java基本语法与类库
1. 本周学习总结 本周主要学习了包装类,明白了包装类比基本数据类型的优点(见书面作业4.2),了解了自动装箱,自动拆箱的概念和区别(见书面作业4.1),知道了java中的引用类似C语言中的指针,明白 ...
- 2017-2018-1 1623 bug终结者 冲刺002
bug终结者 冲刺002 by 20162329 张旭升 今日冲刺任务: 能够显示主菜单和功能 游戏需要提供主菜单让玩家进行游戏设置,同时能能够把地图文件中的信息转换成为图像显示到游戏界面上 能够实现 ...
- 1013团队alpha冲刺日志集合帖
alpha冲刺day1 alpha冲刺day2 alpha冲刺day3 alpha冲刺day4 alpha冲刺day5 alpha冲刺day6 alpha冲刺day7 alpha冲刺day8 alph ...
- 201621123044 《Java程序设计》第六周实验总结
1. 本周学习总结 1.1 面向对象学习暂告一段落,请使用思维导图,以封装.继承.多态为核心概念画一张思维导图或相关笔记,对面向对象思想进行一个总结. 注1:关键词与内容不求多,但概念之间的联系要清晰 ...
- wpf研究之道——datagrid控件数据绑定
前台: <DataGrid x:Name="TestCaseDataGrid" ItemsSource="{Binding}" > {binding ...
- Java开发利器--Lombok,IDEA端安装教程
1.插件安装File-Setting-Plugins 2.开启注解支持: 3.安装lombok maven插件 <plugin> <groupId>org.projectlom ...
- guava-19.0和google-collections-1.0 的 ImmutableSet 类冲突
guava-19.0 google-collections-1.0 都有 ImmutableSet 类,包路径也一致,前者有 copyOf(Collection)? 一.应用报错: 二.解决办法 co ...
- IDE-Android Studio -FAQ-使用习惯(不断更新 欢迎留言)
摘要: 从ecplise工具切换到android studio后遇到了很多问题,起初亦非常痛苦,城墙内外阅博无数才得以解决.所以把当时遇到的问题记录下来,方便后来人学习. 另如果有遇到未纪录的问题欢迎 ...
- mysql(1)—— 详解一条sql语句的执行过程
SQL是一套标准,全称结构化查询语言,是用来完成和数据库之间的通信的编程语言,SQL语言是脚本语言,直接运行在数据库上.同时,SQL语句与数据在数据库上的存储方式无关,只是不同的数据库对于同一条SQL ...