前面几篇博客都是关于排序的,在之前陆陆续续发布的博客中,我们先后介绍了冒泡排序、选择排序、插入排序、希尔排序、堆排序、归并排序以及快速排序。俗话说的好,做事儿要善始善终,本篇博客就算是对之前那几篇博客的总结了。而本篇博客的示例Demo也是在之前那些博客Demo的基础上做的,也算是集成了各种排序的方法,然后给出了可视化的解决方案。今天博客的内容还是比较有趣的。

因为本猿是做iOS开发的,所以就使用iOS相关的组件来表示上述各种排序的过程。使用可视化方式来感受一下上述这些排序方法的异同。本篇博客所使用的相关的排序代码都是来自于之前的博客。因为我们在之前实现各种排序Demo时,我们定义了相应的排序接口SortType,所以上述的七种排序对外的调用方式是一致的,所以在此基础上给出相应排序的可视化解决方案并不困难。本篇博客就会给出其相应的扩展过程。

如果你想对上述7中排序进行详细的了解,请移步与之前的博客《冒泡排序、插入排序、希尔排序、选择排序》、《堆排序》、《归并排序》、《快速排序》、《基数排序》。废话少说,开始今天的博客。

一、可视化解决方案综述

1.交互UI综述

在本篇博客的第一部分我们先来整体的看一下我们Demo的功能。下方就是我们今天博客中的Demo的交互示意图。上方的输入框可以输入要排序元素的个数,下方输入的是300。程序会根据你输入的个数来随机生成数据,你输入300,就会随机生成300个数据提供排序使用。下方的SegmentControl可以选择不同的排序方式,本篇博客给出了7中常用的排序方式,选择完排序方式后可以点击右上方的排序按钮进行相应的排序。

下方显示的不同颜色的颜色条就是我们要排序的东西,我们会按照从小到大的方式对这些色条进行排序。左图中是未排序的状态,右图中是已经排序的状态。我们上面随机生成的数据反应到色条上就是色条的高度,我们按照色条的高度进行从小到大的排序。下方会给出每种排序的介绍。

  

2、部分核心代码实现

为了实现今天的Demo,我们需要对之前我们实现的那一些列的排序的方法进行扩展。因为我们之前在实现各种排序时,我们先定义了SortType接口,依据“开放封闭原则”,我们可以为各种排序的类创建一个“简单工厂”以供我们的视图层使用。关于设计模式更多以及更详细的内容,可以移步之前发布的设计模式系列博客《设计模式Swift版》。

  

上方就是为各种Sort类提供的“简单工厂”。上面这个简单工厂在视图控制器中点击SegmentControl时会使用,因为我们在选择不同排序类的时候需要使用不同的排序对象。下方就是我们视图控制器对“简单工厂”的调用,当然我们所有排序类都有父类,你也可以使用“工厂方法”来创建相应的对象,在此就不做过多赘述了。

下方代码段就是点击SegmentControl要调用的方法,其中从“简单工厂”中获取到相应排序方式的对象后,然后在设置相应的闭包回调

  

二、冒泡排序

接下来我们来逐一看一下每种排序的具体效果。下方就是冒泡排序的效果,因为冒泡排序的时间复杂度是O(n^2)的,所以我们先设置元素个数是80, 如果太大的话会比较慢。因为我们在排序步骤结果输出时,每进行一次交换操作或者比较操作让排序线程休眠0.001秒,便于我们观察整个排序过程。

从下方这个动图上我们不难看出冒泡的整个过程,较小的数据从右往左以此往外冒。下方这个效果还是比较直观的,整个冒泡过程就是从后往前比较,如果后边的数要比前边的小就交换。冒泡过程如下所示:

  

三、选择排序

选择排序的时间复杂度也是O(n^2)。下方是“选择排序”的可视化过程,选择排序的过程就是从无序序列中找出最小的那个值放到有序序列中最后方。不断执行这个过程,我们的序列就是有序的了。下方就是选择排序的整个过程,元素的个数是80.

  

四、插入排序

插入排序的复杂度与上述选择排序的时间复杂度一样,都是O(n^2)。下方就是插入排序的运行结果。插入排序是从无序序列中取出第一个值,然后插入到前方有序序列中相应的位置。每次插入后,有序序列就会增加1,无序序列就会减少1。下方就是插入排序的过程,如下所示:

  

五、希尔排序

希尔排序的效率要高一些,其时间复杂度是O(n^(3/2))。下方就是希尔排序的具体执行步骤,希尔排序又称为缩小增量排序。该排序方式是插入排序的升级版,等增量缩小到1时,我们的序列就是有序的了。下方就是希尔排序的具体执行步骤,如下所示:

  

六、堆排序

堆排序比希尔排序更为高效,其时间复杂度为O(nlog2n)。下方的“堆排序”是根据大顶堆来进行排序的,大顶堆第一个值是序列中最大的,我们可以利用这一点获取无序序列中最大的那个值。首先我们将序列调整为大顶堆,然后把大顶堆的第一个值与最后一个值进行交换,然后再将剩下的序列调整成大顶堆,然后进行下一轮的替换。

  

七、归并排序

归并排序的时间复杂度也是O(nlog2n)。归并排序就是将无序数组拆分成多个只有一个元素的数组,然后进行两两合并。在合并的过程中将两个数组中的元素进行比较,将较小的放在前方,两个有序的数组合并后依然是有序的,然后再次进行两两合并,直到合并成一个数组为止。下方就是归并排序的执行顺序,从执行过程中,我们可以清楚的看到在排序过程中被分割的小的有序序列。归并排序的执行过程如下所示:

  

八、快速排序

快速排序的时间复杂度为O(nlog2n)。下方是快速排序的执行步骤,快速排序是利用里分治法的思想。从无序序列中取出一个值,比该值大的放在前方,比该值小的放在后方。然后递归执行前半部分和后半部分依次递归下去,我们的序列就是有序的了。

  

九、基数排序

下方是基数排序的运行效果,我们先输入1000个元素,生成1000个随机数,选择基数排序。如下所示:

  

十、上述排序的比较

关于上述排序的比较,在此就不做过多赘述了,就引用“维基百科”中的表格来说明吧,如下所示:

   

今天博客中所涉及的Demo依然会在github上进行分享,分享地址如下。

github源码分享地址:https://github.com/lizelu/DataStruct-Swift/tree/master/AllKindsOfSortForiOS


iOS可视化动态绘制八种排序过程(Swift版)的更多相关文章

  1. iOS可视化动态绘制八种排序过程

    前面几篇博客都是关于排序的,在之前陆陆续续发布的博客中,我们先后介绍了冒泡排序.选择排序.插入排序.希尔排序.堆排序.归并排序以及快速排序.俗话说的好,做事儿要善始善终,本篇博客就算是对之前那几篇博客 ...

  2. iOS可视化动态绘制连通图

    上篇博客<iOS可视化动态绘制八种排序过程>可视化了一下一些排序的过程,本篇博客就来聊聊图的东西.在之前的博客中详细的讲过图的相关内容,比如<图的物理存储结构与深搜.广搜>.当 ...

  3. iOS可视化动态绘制连通图(Swift版)

    上篇博客<iOS可视化动态绘制八种排序过程>可视化了一下一些排序的过程,本篇博客就来聊聊图的东西.在之前的博客中详细的讲过图的相关内容,比如<图的物理存储结构与深搜.广搜>.当 ...

  4. Java 的八种排序算法

    Java 的八种排序算法 这个世界,需要遗忘的太多. 背景:工作三年,算法一问三不知. 一.八种排序算法 直接插入排序.希尔排序.简单选择排序.堆排序.冒泡排序.快速排序.归并排序和基数排序. 二.算 ...

  5. 关东升的iOS实战系列图书 《iOS实战:入门与提高卷(Swift版)》已经上市

             承蒙广大读者的厚爱我的 <iOS实战:入门与提高卷(Swift版)>京东上市了,欢迎广大读者提出宝贵意见.http://item.jd.com/11766718.html ...

  6. Java实现八种排序算法(代码详细解释)

    经过一个多星期的学习.收集.整理,又对数据结构的八大排序算法进行了一个回顾,在测试过程中也遇到了很多问题,解决了很多问题.代码全都是经过小弟运行的,如果有问题,希望能给小弟提出来,共同进步. 参考:数 ...

  7. 八种排序算法--java实现(转)

    (转:http://blog.csdn.net/without0815/article/details/7697916) 8种排序之间的关系: 1, 直接插入排序 (1)基本思想:在要排序的一组数中, ...

  8. 秒杀9种排序算法(JavaScript版)

    一:你必须知道的 1> JS原型 2> 排序中的有序区和无序区 3> 二叉树的基本知识 如果你不知道上面三个东西,还是去复习一下吧,否则,看下面的东西有点吃力. 二:封装丑陋的原型方 ...

  9. java实现八种排序算法并测试速度(详细)

    算法代码: /** * Created by CLY on 2017/3/17. */ package pers.cly.sorting; /** * 排序工具类,里面包含各种排序方法 */ publ ...

随机推荐

  1. Get,Post请求方式经典详解

    本文转自:http://blog.csdn.net/findsafety/article/details/47129021 前几天工作中,所有表单我都采用post方法,头儿说那样不好,大型网站上一般都 ...

  2. Kali Linux虚拟机安装完整安装过程及简单配置(视频)

    点击播放视频 附:视频中出现的两个txt文本,包含了大致的安装与配置过程: 文本1:KaliLinux虚拟机安装和初步配置 Kali Linux虚拟机安装和初步配置 大家好,今天给大家演示一下在VMw ...

  3. 拇指玩」制作的「谷歌安装器」app

    作者:匿名用户链接:https://www.zhihu.com/question/57468448/answer/153000587来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请 ...

  4. 《javascript语言精粹》读书笔记 Item1 精华与语法

    第一章 精华 任何语言都有其精华的部分和鸡肋的部分,javascript也不例外,而且鸡肋的部分还很多.但javascript的流行却不受他的质量影响. javascript为何如此流行?因为他是we ...

  5. 译MassTransit 生产消息

    生产消息 应用程序或服务可以使用两种不同的方法生产消息.可以使用Sead发送消息,也可以使用Publish发布消息.每个方法的行为是非常不同的,但是通过查看每个特定方法所涉及的消息类型,可以很容易理解 ...

  6. BZOJ_1826_[JSOI2010]缓存交换 _线段树+贪心

    BZOJ_1826_[JSOI2010]缓存交换 _线段树+贪心 Description 在计算机中,CPU只能和高速缓存Cache直接交换数据.当所需的内存单元不在Cache中时,则需要从主存里把数 ...

  7. BZOJ_3316_JC loves Mkk_ 二分答案 + 单调队列

    BZOJ_3316_JC loves Mkk_ 二分答案 + 单调队列 题意: 分析: 拆成链,二分答案,奇偶两个单调队列维护最大子段和,记录方案. 代码: #include <cstdio&g ...

  8. BZOJ_2157_旅游_树剖+线段树

    BZOJ_2157_旅游_树剖+线段树 Description Ray 乐忠于旅游,这次他来到了T 城.T 城是一个水上城市,一共有 N 个景点,有些景点之间会用一座桥连接.为了方便游客到达每个景点但 ...

  9. BZOJ 1412 狼和羊的故事

    首先,题目目的就是为了分割狼群和羊群,即建立超级源和超级汇求最小割从而转化成用网络流来处理. 如果没有空地,那么就是简单的二分图最大匹配,但是题中有空地的出现,所以需要在点与点之间建立双向边(不算后向 ...

  10. vue防止按钮在短时间内被多次点击的方法

    vue组件 (function(){ let openDelay=false; Vue.directive('intervalclick', function(el,binding){ el.oncl ...