视觉问题引入深度神经网络后,针对端对端的训练和预测网络,可以看是特征的表达和任务的决策问题(分类,回归等)。当我们自己的训练数据量过小时,往往借助牛人已经预训练好的网络进行特征的提取,然后在后面加上自己特定任务的网络进行调优。目前,ILSVRC比赛(针对1000类的分类问题)所使用数据的训练集126万张图像,验证集5万张,测试集10万张(标注未公布),大家一般使用这个比赛的前几名的网络来搭建自己特定任务的神经网络。

本篇博文主要简单讲述怎么使用TensorFlow调用预训练好的VGG网络,其他的网络(如Alex, ResNet等)也是同样的套路。分为三个部分:第一部分下载网络架构定义以及权重参数,第二部分是如何调用预训练网络中的feature
map,第三部分给出参考资料。注:资料是学习查找整理而得,理解有误的地方,请多多指正~

一、下载网络架构定义以及权重参数

https://github.com/leihe001/tensorflow-vgg
 训练和测试网络的定义

https://mega.nz/#!YU1FWJrA!O1ywiCS2IiOlUCtCpI6HTJOMrneN-Qdv3ywQP5poecM VGG16

https://mega.nz/#!xZ8glS6J!MAnE91ND_WyfZ_8mvkuSa2YcA7q-1ehfSm-Q1fxOvvs
VGG19

二、调用预训练网络中的feature map(以VGG16为例)

import inspect
import os

import numpy as np
import tensorflow as tf
import time

VGG_MEAN = [103.939, 116.779, 123.68]

class Vgg16:
    def __init__(self, vgg16_npy_path=None):
        if vgg16_npy_path is None:
            path = inspect.getfile(Vgg16)
            path = os.path.abspath(os.path.join(path, os.pardir))
            path = os.path.join(path, "vgg16.npy")
            vgg16_npy_path = path
            print path
	# 加载网络权重参数
        self.data_dict = np.load(vgg16_npy_path, encoding='latin1').item()
        print("npy file loaded")

    def build(self, rgb):
        """
        load variable from npy to build the VGG

        :param rgb: rgb image [batch, height, width, 3] values scaled [0, 1]
        """

        start_time = time.time()
        print("build model started")
        rgb_scaled = rgb * 255.0

        # Convert RGB to BGR
        red, green, blue = tf.split(3, 3, rgb_scaled)
        assert red.get_shape().as_list()[1:] == [224, 224, 1]
        assert green.get_shape().as_list()[1:] == [224, 224, 1]
        assert blue.get_shape().as_list()[1:] == [224, 224, 1]
        bgr = tf.concat(3, [
            blue - VGG_MEAN[0],
            green - VGG_MEAN[1],
            red - VGG_MEAN[2],
        ])
        assert bgr.get_shape().as_list()[1:] == [224, 224, 3]

        self.conv1_1 = self.conv_layer(bgr, "conv1_1")
        self.conv1_2 = self.conv_layer(self.conv1_1, "conv1_2")
        self.pool1 = self.max_pool(self.conv1_2, 'pool1')

        self.conv2_1 = self.conv_layer(self.pool1, "conv2_1")
        self.conv2_2 = self.conv_layer(self.conv2_1, "conv2_2")
        self.pool2 = self.max_pool(self.conv2_2, 'pool2')

        self.conv3_1 = self.conv_layer(self.pool2, "conv3_1")
        self.conv3_2 = self.conv_layer(self.conv3_1, "conv3_2")
        self.conv3_3 = self.conv_layer(self.conv3_2, "conv3_3")
        self.pool3 = self.max_pool(self.conv3_3, 'pool3')

        self.conv4_1 = self.conv_layer(self.pool3, "conv4_1")
        self.conv4_2 = self.conv_layer(self.conv4_1, "conv4_2")
        self.conv4_3 = self.conv_layer(self.conv4_2, "conv4_3")
        self.pool4 = self.max_pool(self.conv4_3, 'pool4')

        self.conv5_1 = self.conv_layer(self.pool4, "conv5_1")
        self.conv5_2 = self.conv_layer(self.conv5_1, "conv5_2")
        self.conv5_3 = self.conv_layer(self.conv5_2, "conv5_3")
        self.pool5 = self.max_pool(self.conv5_3, 'pool5')

        self.fc6 = self.fc_layer(self.pool5, "fc6")
        assert self.fc6.get_shape().as_list()[1:] == [4096]
        self.relu6 = tf.nn.relu(self.fc6)

        self.fc7 = self.fc_layer(self.relu6, "fc7")
        self.relu7 = tf.nn.relu(self.fc7)

        self.fc8 = self.fc_layer(self.relu7, "fc8")

        self.prob = tf.nn.softmax(self.fc8, name="prob")

        self.data_dict = None
        print("build model finished: %ds" % (time.time() - start_time))

    def avg_pool(self, bottom, name):
        return tf.nn.avg_pool(bottom, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name=name)

    def max_pool(self, bottom, name):
        return tf.nn.max_pool(bottom, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name=name)

    def conv_layer(self, bottom, name):
        with tf.variable_scope(name):
            filt = self.get_conv_filter(name)

            conv = tf.nn.conv2d(bottom, filt, [1, 1, 1, 1], padding='SAME')

            conv_biases = self.get_bias(name)
            bias = tf.nn.bias_add(conv, conv_biases)

            relu = tf.nn.relu(bias)
            return relu

    def fc_layer(self, bottom, name):
        with tf.variable_scope(name):
            shape = bottom.get_shape().as_list()
            dim = 1
            for d in shape[1:]:
                dim *= d
            x = tf.reshape(bottom, [-1, dim])

            weights = self.get_fc_weight(name)
            biases = self.get_bias(name)

            # Fully connected layer. Note that the '+' operation automatically
            # broadcasts the biases.
            fc = tf.nn.bias_add(tf.matmul(x, weights), biases)

            return fc

    def get_conv_filter(self, name):
        return tf.constant(self.data_dict[name][0], name="filter")

    def get_bias(self, name):
        return tf.constant(self.data_dict[name][1], name="biases")

    def get_fc_weight(self, name):
        return tf.constant(self.data_dict[name][0], name="weights")

以上是VGG16网络的定义,假设我们现在输入图像image,打算做分割,那么我们可以使用端对端的全卷积网络进行训练和测试。针对这个任务,我们只需要输出pool5的feature map即可。

#以上你的网络定义,初始化方式,以及数据预处理...

vgg = vgg16.Vgg16()
vgg.build(image)
feature_map = vgg.pool5
mask = yournetwork(feature_map)

#以下定义loss,学习率策略,然后train...

三、参考资料

https://github.com/leihe001/tensorflow-vgg

https://github.com/leihe001/tfAlexNet

https://github.com/leihe001/tensorflow-resnet

学习TensorFlow,调用预训练好的网络(Alex, VGG, ResNet etc)的更多相关文章

  1. TensorFlow 调用预训练好的模型—— Python 实现

    1. 准备预训练好的模型 TensorFlow 预训练好的模型被保存为以下四个文件 data 文件是训练好的参数值,meta 文件是定义的神经网络图,checkpoint 文件是所有模型的保存路径,如 ...

  2. tensorflow 使用预训练好的模型的一部分参数

    vars = tf.global_variables() net_var = [var for var in vars if 'bi-lstm_secondLayer' not in var.name ...

  3. 从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史(转载)

    转载 https://zhuanlan.zhihu.com/p/49271699 首发于深度学习前沿笔记 写文章   从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史 张 ...

  4. zz从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史

    从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史 Bert最近很火,应该是最近最火爆的AI进展,网上的评价很高,那么Bert值得这么高的评价吗?我个人判断是值得.那为什么 ...

  5. NLP之预训练

    内容是结合:https://zhuanlan.zhihu.com/p/49271699 可以直接看原文 预训练一般要从图像处理领域说起:可以先用某个训练集合比如训练集合A或者训练集合B对这个网络进行预 ...

  6. LUSE: 无监督数据预训练短文本编码模型

    LUSE: 无监督数据预训练短文本编码模型 1 前言 本博文本应写之前立的Flag:基于加密技术编译一个自己的Python解释器,经过半个多月尝试已经成功,但考虑到安全性问题就不公开了,有兴趣的朋友私 ...

  7. 第二十四节,TensorFlow下slim库函数的使用以及使用VGG网络进行预训练、迁移学习(附代码)

    在介绍这一节之前,需要你对slim模型库有一些基本了解,具体可以参考第二十二节,TensorFlow中的图片分类模型库slim的使用.数据集处理,这一节我们会详细介绍slim模型库下面的一些函数的使用 ...

  8. 在 C/C++ 中使用 TensorFlow 预训练好的模型—— 直接调用 C++ 接口实现

    现在的深度学习框架一般都是基于 Python 来实现,构建.训练.保存和调用模型都可以很容易地在 Python 下完成.但有时候,我们在实际应用这些模型的时候可能需要在其他编程语言下进行,本文将通过直 ...

  9. 在 C/C++ 中使用 TensorFlow 预训练好的模型—— 间接调用 Python 实现

    现在的深度学习框架一般都是基于 Python 来实现,构建.训练.保存和调用模型都可以很容易地在 Python 下完成.但有时候,我们在实际应用这些模型的时候可能需要在其他编程语言下进行,本文将通过 ...

随机推荐

  1. 关于div包裹img,底下多出3px间隙的问题

    背景:昨天写过一个div包裹图片的html,已经reset了所有的div,但还是发现img与div底部会有3px的间距,我检查了所有的css,发现并未发现什么问题,结果度娘了一下,发现好多朋友都遇到了 ...

  2. [LeetCode] Longest Palindromic Subsequence 最长回文子序列

    Given a string s, find the longest palindromic subsequence's length in s. You may assume that the ma ...

  3. 从三个开源项目认识OpenFlow交换机 - OVS

    在SDN/NFV的网络革新技术浪潮的引领下,催生了诸多数据面开源方案的诞生.业界知名度较高的有OVS(Open vSwitch).FD.io (Fast Data I/O).ODP(Open Data ...

  4. pyqt5 QGraphicsView颜色动画问题(不兼容,运行不了动画)

    初学动画.无敌踩坑,资料真的是太少了.....本坑是一个大坑,只有解决方法,但实质原因仍不清楚 在一篇资料中了解到我们可以通过QGraphicsView来实现动画QPropertyAnimation ...

  5. .NET CORE 2.0之 httpcontext

    HttpContext  在之前的.NET framework 是一个非常常用且强大的类,在.NET CORE2.0中要像以前用是不太方便的了, 要是用sesson 首先需要在startup 的Con ...

  6. seacms6.5 注入漏洞1

    ---恢复内容开始--- 需要开启/data/admin/isapi.txt   ,当里面的数值为1时,就可以报错注入 存在漏洞的页面:zyapi.php function cj() { global ...

  7. [Codeforces 933A]A Twisty Movement

    Description 题库链接 给你一个长度为 \(n\) 的只含有 \(1,2\) 的序列.你可以选择其中的一段 \([l,r]\) ,将区间翻转,翻转后使得单调不下降序列最长.求最长长度. \( ...

  8. CSAPP-链接

    主要任务: 1.符号解析 在声明变量和函数之后,所有的符号声明都被保存到符号表. 而符号解析阶段会给每个符号一个定义. 2.重定位: 把每个符号的定义与一个内存位置关联起来,然后修改所有对这些符号的引 ...

  9. poj2947 高斯消元

    Widget Factory Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 5218   Accepted: 1802 De ...

  10. [bzoj4866] [Ynoi2017]由乃的商场之旅

    来自FallDream的博客,未经允许,请勿转载,谢谢, 由乃有一天去参加一个商场举办的游戏.商场派了一些球王排成一行.每个人面前有几堆球.说来也巧,由乃和你一样,觉得这游戏很无聊,于是决定换一个商场 ...