【最短路径Floyd算法详解推导过程】看完这篇,你还能不懂Floyd算法?还不会?
简介
Floyd-Warshall算法(Floyd-Warshall algorithm),是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法,与Dijkstra算法类似。该算法名称以创始人之一、1978年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名。
简单的说就是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包。Floyd-Warshall算法的时间复杂度为O(N3),空间复杂度为O(N2)。
解决最短路径问题有几个出名的算法:
1.dijkstra算法,最经典的单源最短路径算法
2.bellman-ford算法,允许负权边的单源最短路径算法
3.spfa,其实是bellman-ford+队列优化,其实和bfs的关系更密一点
4.floyd算法,经典的多源最短路径算法
今天先说说Floyd
Floyd算法详解
描述
a)如图:存在【0,1,2,3】 4个点,两点之间的距离就是边上的数字,如果两点之间,没有边相连,则无法到达,为无穷大。
b)要让任意两点(例如从顶点a点到顶点b)之间的路程变短,只能引入第三个点(顶点k),并通过这个顶点k中转即a->k->b,才可能缩短原来从顶点a点到顶点b的路程。那么这个中转的顶点k是0~n中的哪个点呢?
算法过程
准备
1)如图 0->1距离为5,0->2不可达,距离为∞,0->3距离为7……依次可将图转化为邻接矩阵(主对角线,也就是自身到自身,我们规定距离为0,不可达为无穷大),如图矩阵 用于存放任意一对顶点之间的最短路径权值。
2)再创建一个二维数组Path路径数组,用于存放任意一对顶点之间的最短路径。每个单元格的内容表示从i点到j点途经的顶点。(初始还未开始查找,默认-1)
开始查找
1)列举所有的路径(自己到自己不算)
即为:
0 -> 1 , 0 -> 2 , 0 -> 3 ,
1 -> 0 , 1 -> 2 , 1 -> 3 ,
2 -> 0 , 1 -> 1 , 1 -> 3
转化成二元数组即为:
{0,1},{0,2},{0,3},{1,0},{1,2},{1,3},{2,0},{2,1},{2,3},{3,0},{3,1},{3,2}
2)选择编号为0的点为中间点
{0,1},{0,2},{0,3},{1,0},{1,2},{1,3},{2,0},{2,1},{2,3},{3,0},{3,1},{3,2}
从上面中二元组集合的第一个元素开始,循环执行以下过程:
1. 用i,j两个变量分别指向二元组里的两个元素,比如{0,1}这个二元组,i指向0;j指向1
2. 判断 (A[ i ][ 0 ]+A[ 0 ][ j ] ) < A[ i ][ j ] (即判断 i -> j,i点到j点的距离是否小于从0点中转的距离),如果false,则判断下一组二元数组。
3. 如果表达式为真,更新A[ i ] [ j ]的值为A[ i ] [ 0 ] + A[ 0 ] [ j ],Path[ i ] [ j ]的值为点0(即设置i到j要经过0点中转)
{0,1}按照此过程执行之后,
0->0 + 0->1的距离不小于0->1 ,下一组{0,2},{0,3}, {1,0},{2,0},{3,0}也同理。
{1,2}按照此过程执行,A[1,0] 无穷大, A[0,2]也是无穷大,而A[1,4] = 4,则1点到2点肯定不会从0点中转。
A[1][0]无穷大同理下一组{1,2}, {1,3}也同理。
{2,1}按照此过程执行,A[2][0] = 3 ,A[0][1]=5 ,A[2][1] = 3那么 A[2][0]+ ,A[0][1] > A[2][1]
…………
依次类推,遍历二元组集合,没有0点适合做中转的
3)选择编号为1的点为中间点
4)选择编号为2的点为中间点
依次类推,遍历二元组集合{0,1},{0,2},{0,3},{1,0},{1,2},{1,3},{2,0},{2,1},{2,3},{3,0},{3,1},{3,2}
,当遍历{3,0}时,A[3][2] = 1 ,A[2][0]=3 ,A[3][0] = 不可达,那么 2点适合做从3点到0点之间的中转点。
设置距离矩阵A[3][0] = 1+3 =4 ,Path矩阵Path[3][0] = 2点,表示从3到0在2点中转,距离最近。
如图表示(红色单元格),从3到0,最近距离为4,在2点中转 。
依次类推,遍历完二元组集合
5)选择编号为3的点为中间点,最终结果
依次类推,遍历二元组集合,直到所有的顶点都做过一次中间点为止。
6)根据最终结果,就可以知道任意2点的最短距离和路径
比如1点到2点怎么走?根据路径Path矩阵,Path[1][2] = 3,表示从点3中转,即 1-> 3 ->2
6)如果中转点不止1个呢?
有时候不只通过一个点,而是经过两个点或者更多点中转会更短,即a->k1->k2b->或者a->k1->k2…->k->i…->b。
比如顶点1到顶点0,我们看数组Path
Path[1][0] = 3,说明顶点3是中转点,那么再从3到0
Path[3][0] = 2,说明从3到0,顶点2是中转点,然后在从2到0
Path[2][0] = -1,说明顶点2到顶点0没有途径顶点,也就是说,可以由顶点2直接到顶点0,即它们有边连接。
最终,最短路径为1->3->2->0,距离为 A[1][0] = 6 。
显然,这是一个逐层递进,递归的过程。
算法实现
基本定义
// 表示无穷大 即不可达
public static int MAX = Integer.MAX_VALUE;
// 距离矩阵
public int[][] dist;
// 路径Path矩阵
public int[][] path;
核心算法
// 核心算法
for(int k = 0 ; k < size ; k++){
for(int i = 0;i < size;i++){
for(int j = 0 ;j < size;j++){
// 判断如果 ik距离可达且 kj距离可达 且 i和j的距离是否大于 i-> k 与 k->j的距离和
if( dist[i][k] != MAX && dist[k][j] != MAX && dist[i][j] > (dist[i][k] + dist[k][j]) ){
path[i][j]= k;
dist[i][j]= dist[i][k] + dist[k][j];
}
}
}
}
运行结果
源码下载
看完这篇文章如果你还不会Floyd,请留言评论。
【最短路径Floyd算法详解推导过程】看完这篇,你还能不懂Floyd算法?还不会?的更多相关文章
- JVM类加载机制详解,建议看这一篇就够了,深入浅出总结的十分详细!
类加载机制 虚拟机把描述类的数据从Class文件加载到内存,并对数据进行校验.转换解析和初始化,最终形成可以被虚拟机直接使用的Java类型,这就是虚拟机的类加载机制. 类加载的时机 遇到new(比如n ...
- Android开发之recycleView详解代码,看完包你熟练掌握recycleView的用法。转自网络经典文章
来源 http://jinyudong.com/2014/11/13/Introduce-RecyclerView-%E4%B8%80/ 编辑推荐:稀土掘金,这是一个针对技术开发者的一个应用,你可以在 ...
- 最短路算法详解(Dijkstra/SPFA/Floyd)
新的整理版本版的地址见我新博客 http://www.hrwhisper.me/?p=1952 一.Dijkstra Dijkstra单源最短路算法,即计算从起点出发到每个点的最短路.所以Dijkst ...
- 八大排序算法详解(动图演示 思路分析 实例代码java 复杂度分析 适用场景)
一.分类 1.内部排序和外部排序 内部排序:待排序记录存放在计算机随机存储器中(说简单点,就是内存)进行的排序过程. 外部排序:待排序记录的数量很大,以致于内存不能一次容纳全部记录,所以在排序过程中需 ...
- BM算法 Boyer-Moore高质量实现代码详解与算法详解
Boyer-Moore高质量实现代码详解与算法详解 鉴于我见到对算法本身分析非常透彻的文章以及实现的非常精巧的文章,所以就转载了,本文的贡献在于将两者结合起来,方便大家了解代码实现! 算法详解转自:h ...
- 机器学习经典算法详解及Python实现--基于SMO的SVM分类器
原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector ...
- [转] KMP算法详解
转载自:http://www.matrix67.com/blog/archives/115 KMP算法详解 如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段. 我们这里说的K ...
- KMP算法详解(转自中学生OI写的。。ORZ!)
KMP算法详解 如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段. 我们这里说的KMP不是拿来放电影的(虽然我很喜欢这个软件),而是一种算法.KMP算法是拿来处理字符串匹配的.换句 ...
- Tarjan算法详解
Tarjan算法详解 今天偶然发现了这个算法,看了好久,终于明白了一些表层的知识....在这里和大家分享一下... Tarjan算法是一个求解极大强联通子图的算法,相信这些东西大家都在网络上百度过了, ...
随机推荐
- search_request.go
package types type SearchRequest struct { // 搜索的短语(必须是UTF-8格式),会被分词 // 当值为空字符串时关键词会从下面的Token ...
- bzoj 4318 OSU 概率期望dp
可以发现:f[i]转移到f[i+1]只和最后一串1的长度和平方有关, 因为如果新加的位置是1,贡献就是(x+1)^3-x^3=3x^2+3x+1,否则为0: 所以对于每一个位置,处理出期望的f,x和x ...
- VMware workstation的基础使用
1. VMware workstation虚拟化平台简介2. VMware workstation提供网络资源3. VMware workstation提供存储资源4. VMware workstat ...
- TensorFlow实现分布式计算
摘要: 1.代码例子 内容: 1.代码例子 <TensorFlow实战>实现CNN处理CIFAR10数据,并模拟单机多个CPU同步数据并行计算 <TensorFlow实战>实现 ...
- UWP中实现大爆炸效果(二)
上一回实现了一个宽度不均匀的Panel,这次我们编写一个简单的BigbangView主体. 首先创建一个模板化控件,删掉Themes/Generic.xaml中的<Style TargetTyp ...
- JavaScript使用闭包实现单例模式
闭包是JS的一种特性,其中一点就是:可以将外部函数的变量保存在内存中,利用这一特性,我们可以用来实现类的单例模式. 首先需要了解何为单例模式: 意图:保证一个类仅有一个实例,并提供一个访问它的全局访问 ...
- java代码之美(11)---java代码的优化
java代码的优化 随着自己做开发时间的增长,越来越理解雷布斯说的: 敲代码要像写诗一样美.也能理解有一次面试官问我你对代码有洁癖吗? 一段好的代码会让人看就像诗一样,也像一个干净房间会让人看去很舒服 ...
- Kubernetes Ingress Controller的使用及高可用落地
Kubernetes Ingress Controller的使用及高可用落地 看懂本文要具备一下知识点: Service实现原理和会应用 知道反向代理原理,了解nginx和apache的vhost概念 ...
- 使用vue开发项目需要注意的问题和可能踩到的坑
最近,在公司给一些刚刚使用vue进行开发的同学做了一次分享, 其中包括一些vue开发中需要注意的点, 以及一些可能会踩到的坑.具体内容如下: 一.生命钩子使用需要注意的地方 1.beforeCreat ...
- .NETCore 快速开发做一个简易商城
介绍 上一篇介绍 <.NETCore 基于 dbfirst 体验快速开发项目>,讲得不太清楚有些多人没看懂.这次吸取教训,将一个简易商城做为案例,现实快速开发. 本案例用于演示或学习,不具 ...