COGS 1043. [Clover S2] Freda的迷宫
★ 输入文件:mazea.in 输出文件:mazea.out 简单对比
时间限制:1 s 内存限制:128 MB Freda 的迷宫
- (mazea.pas/.c/.cpp)
- 题目叙述
- Freda 是一个迷宫爱好者,她利用业余时间建造了许多迷宫。每个迷宫都是由若干房间
- 和走廊构成的,每条走廊都连接着两个不同的房间,两个房间之间最多只有一条走廊直接相
- 连,走廊都是双向通过。
- 黄昏时候,Freda 喜欢在迷宫当中漫步。每天,Resodo 都会为Freda 设计一个挑战方案。
- Resodo 会指定起点和终点,请Freda 来找到一条从起点到终点的简单路径。一条简单路径定
义为一个房间序列,每个房间至多在序列里出现一次,且序列中相邻的两个房间有走廊相连。
当起点和终点之间存在且仅存在一条简单路径的时候,Freda 认为这个挑战方案是RD 的。现
在,请你帮帮Resodo 来写一个程序,判断一个挑战方案是否是RD 的。
输入格式
第一行三个整数N,M,Q.分别表示房间数,走廊数,询问数。
接下来M 行每行2 个整数x,y, 0<x,y<=n, 表示x="" 和y="" 之间有一条走廊相连。<="" span="">
接下来Q 行每行2 个整数x,y, 表示询问以x 为起点,y 为终点的挑战方案是否是RD 的.
- 输出格式
- 对于每个询问,输出一行”Y”或者”N”(不含引号).Y 表示该询问所表示的挑战方案
- 是RD 的,N 表示该询问所表示的挑战方案不是RD 的.
- 输入样例
- 6 5 3
- 1 2
- 2 3
2 4
2 5
4 5
1 3
1 5
2 6
输出样例
Y
N
N
样例解释
1,3 之间只有一条路径1->2->3
1,5 之间有两条路径1->2->5 ; 1->2->4->5
1,6 之间没有路径
数据范围与约定
对于30%的数据,N<=100, M<=1000, Q<=100.
对于50%的数据,N<=1000, M<=10000, Q<=1000.
对于100%的数据,N<=10000, M<=100000, Q<=10000.
tarjan求桥
Rank1( 偷笑 )
#include <cstdio>
#define N 200005 int n,m,q,cnt,tim,fa[N],to[N<<],dfn[N],low[N],head[N],nextt[N<<];
void ins(int u,int v)
{
nextt[++cnt]=head[u];to[cnt]=v;head[u]=cnt;
nextt[++cnt]=head[v];to[cnt]=u;head[v]=cnt;
}
int find_(int x) {return x==fa[x]?x:fa[x]=find_(fa[x]);}
inline int min(int a,int b) {return a>b?b:a;}
void tarjan(int x,int pre)
{
low[x]=dfn[x]=++tim;
for(int i=head[x];i;i=nextt[i])
{
int v=to[i];
if(v==pre) continue;
if(!dfn[v])
{
tarjan(v,x);
low[x]=min(low[x],low[v]);
if(low[v]>dfn[x]) fa[find_(v)]=find_(x);
}
else if(v!=pre) low[x]=min(low[x],dfn[v]);
}
}
int Main()
{
freopen("mazea.in","r",stdin);
freopen("mazea.out","w",stdout);
scanf("%d%d%d",&n,&m,&q);
for(int u,v;m--;)
{
scanf("%d%d",&u,&v);
ins(u,v);
}
for(int i=;i<=n;++i) fa[i]=i;
for(int i=;i<=n;++i)
if(!dfn[i]) tarjan(i,);
for(int x,y;q--;)
{
scanf("%d%d",&x,&y);
if(find_(x)==find_(y)) puts("Y");
else puts("N");
}
return ;
}
int sb=Main();
int main(int argc,char *argv[]) {;}
COGS 1043. [Clover S2] Freda的迷宫的更多相关文章
- 【CSP模拟赛】Freda的迷宫(桥)
题目描述 Freda是一个迷宫爱好者,她利用业余时间建造了许多迷宫.每个迷宫都是由若干房间和走廊构成的,每条走廊都连接着两个不同的房间,两个房间之间最多只有一条走廊直接相连,走廊都是双向通过. 黄昏 ...
- Tarjan 求图点强联通,桥的应用
在图中求双联通和强联通分量是我们解决非树结构的图连通问题的利器 通过求求图的双联通和强联通分量能把图转化成DAG进行求解: 行走 Description 给出一个有向图,你可以选择从任意点出发走到任意 ...
- cogs 997. [東方S2] 射命丸文
二次联通门 : cogs 997. [東方S2] 射命丸文 /* cogs 997. [東方S2] 射命丸文 二维前缀和 枚举每个子矩阵 更新最大值.. 莫名rank1 */ #include < ...
- cogs 998. [東方S2] 帕秋莉·诺蕾姬
二次联通门 : cogs 998. [東方S2] 帕秋莉·诺蕾姬 交上去后发现自己没上榜 就想着加点黑科技 把循环展开一下 结果WA了.. 万恶的姆Q /* cogs 998. [東方S2] 帕秋莉· ...
- cogs 999. [東方S2]雾雨魔理沙
二次联通门 : cogs 999. [東方S2]雾雨魔理沙 摸你傻赛高!! /* cogs 999. [東方S2]雾雨魔理沙 原来以为是一道计算几何的题 可是细细一想发现.. 这就是一道dp 由于给定 ...
- Cogs 309. [USACO 3.2] 香甜的黄油 dijkstra,堆,最短路,floyd
题目:http://cojs.tk/cogs/problem/problem.php?pid=309 309. [USACO 3.2] 香甜的黄油 ★★ 输入文件:butter.in 输出文件 ...
- 1043 - Triangle Partitioning(数学)
1043 - Triangle Partitioning PDF (English) Statistics Forum Time Limit: 0.5 second(s) Memory Limit ...
- 【搜索1】P1605 迷宫
题目背景 迷宫 [问题描述] 给定一个N*M方格的迷宫,迷宫里有T处障碍,障碍处不可通过.给定起点坐标和 终点坐标,问: 每个方格最多经过1次,有多少种从起点坐标到终点坐标的方案.在迷宫 中移动有上下 ...
- POJ-1077 HDU 1043 HDU 3567 Eight (BFS预处理+康拓展开)
思路: 这三个题是一个比一个令人纠结呀. POJ-1077 爆搜可以过,94ms,注意不能用map就是了. #include<iostream> #include<stack> ...
随机推荐
- webconfig配置详解--转
花了点时间整理了一下ASP.NET Web.config配置文件的基本使用方法.很适合新手参看,由于Web.config在使用很灵活,可以自定义一些节点.所以这里只介绍一些比较常用的节点. <? ...
- node -- 安装及快速开始
下载并安装 node下载地址:https://nodejs.org/en/download/ 安装就绪后,打开命令行,操作如下: shift+右键/Win+r->cmd 检测是否安装成功: no ...
- poj3728(lca / tarjan离线)
题目链接: http://poj.org/problem?id=3728 题意: 给出一棵带点权值的树, 对于 q 组形如 x, y 的询问, 一个人要从 x 到 y(单向), 他可以在路上任意一点以 ...
- burpsuite 抓HTTPS数据包
抓HTTPS数据包 导出保存为cer证书文件,导入到受信任的根证书颁发机构 设置代理服务器与burp中proxy listeners保持一致 设置目标url 抓包 可用repeater发请求
- 最长双回文串(模板+dp)
题目链接 #include <bits/stdc++.h> using namespace std; typedef long long ll; inline ll read(){ , f ...
- Django反向解析与分组命名
1.图书管理系统中使用分组或命名分组.URL的命名和反向解析: 2.删除功能三合一: urls.py文件 from app_book import views urlpatterns = [ url( ...
- Vue中全局导入和按需导入的区别
export {router} //按需导出 import {router} from './router' //按需导入路由模块 export default //全局导出store模块 store ...
- Django基础(5) ----基于双下划线的跨表查询,聚合查询,分组查询,F查询,Q查询
一.基于双下划线的跨表查询 Django 还提供了一种直观而高效的方式在查询(lookups)中表示关联关系,它能自动确认 SQL JOIN 联系.要做跨关系查询,就使用两个下划线来链接模型(mode ...
- chapter05_20180330
// 5.7 主构造器// 主构造器的参数直接旋转在类名之后class Person57(val name: String, val age: Int) { // 上边()中的内容就是主构造器的参数} ...
- Eclipse中mybatis的xml文件没有提示,出现the file cannot be validated as the XML definition.....
1.下载dtd文件 2.在eclipse中配置本地dtd文件: Window->Preferences->XML->XML Catalog->User Specified En ...