Leveling Ground(数论,三分法,堆)
Leveling Ground(数论,三分法,堆)
给定n个数和a,b每次可以选择一段区间+a,-a,+b或-b,问最少操作几次能把他们都变成0。n<=1e5。
首先差分一下序列,问题就会变成了:每次选择两个数,一个+a另一个-a,或一个+b另一个-b,问最少操作几次能把序列变成全0。若不能操作则输出-1。
既然只能+-a或b,那么必须\(A_i=ax_i+by_i\)。由于\(gcd(a, b)|ax+by\),因此若\((a,b)\nmid A_i\)就输出-1。
操作的次数是\(\frac{\sum |x_i|+\sum |y_i|}{2}\)。因此我们要最小化这个值,也就是让每个数的\(cnt_i=|x_i|+|y_i|\)之和均最小。
\(x_i\)可以变成\(x_i+k_ib\),\(y_i\)可以变成\(y_i-k_ia\),这样\(A_i\)依然不变,并且\(cnt_i\)可能变小。由于\(|x_i+k_ib|+|y_i-k_ia|\)是两个一次函数的绝对值的和,因此它是个单峰函数。三分确定k就可以找到最小的\(cnt_i\)。
还有一个问题,就是\(\sum x_i\)和\(\sum y_i\)都要为0,这样才能保证+a-a,+b-b的次数相同。由于\(\sum A_i=\sum ax_i+\sum by_i=0\),因此只要保证\(\sum x_i=0\)即可。接着就只要用小根堆维护所有\(x_i\)降低/升高b,\(y_i\)升高/降低a以后操作次数的增加量,每次取最小的增加量即可。由于\(\sum A_i=\sum ax_i+\sum by_i=0\),因此\(b\mid\sum x_i\),所以一定有解。
Tip:我tm调了一天70分没调出来,所以下面那个并不是真·代码,不过反正大体没有错来着。。如果有哪位大神看出来错误了请务必告诉我。
#include <queue>
#include <cstdio>
#include <iostream>
#include <functional>
using namespace std;
typedef long long LL;
typedef pair<LL, LL> pa;
LL n, a, b, gab, x_base, y_base, delta, pos;
LL gcd(LL x, LL y){ return y?gcd(y, x%y):x; }
inline int _abs(int x){ return x<0?-x:x; }
inline LL _abs(LL x){ return x<0?-x:x; }
inline double _abs(double x){ return x<0?-x:x; }
const LL maxn=1e5+5;
LL A[maxn], B[maxn], x[maxn], y[maxn], k[maxn], cntx, op, ans; //A[i]:原数
priority_queue<pa, vector<pa>, greater<pa> > q;
pa tmp;
LL div3(double L, double R, LL x, LL y){ //三分
double k1, k2, t1, t2;
while (L+0.01<R){
k1=L+(R-L)/3; k2=L+(R-L)/3*2;
t1=_abs(x+k1*b)+_abs(y-k1*a);
t2=_abs(x+k2*b)+_abs(y-k2*a);
if (t1<t2) R=k2; else L=k1;
}
LL k=(L+R)/2;
if (_abs(x+k*b)+_abs(y-k*a)>_abs(x+(k+1)*b)+_abs(y-(k+1)*a)) ++k;
if (_abs(x+k*b)+_abs(y-k*a)>_abs(x+(k-1)*b)+_abs(y-(k-1)*a)) --k;
return k;
}
void exgcd(LL a, LL b, LL &x, LL &y){
if (b==0){ x=1, y=0; return; }
exgcd(b, a%b, x, y); LL prey=y;
y=x-(a/b)*y; x=prey;
}
int main(){
scanf("%lld%lld%lld", &n, &a, &b); gab=gcd(a, b);
for (LL i=1; i<=n; ++i){ scanf("%lld", &B[i]); A[i]=B[i]-B[i-1]; }
A[n+1]=-B[n]; ++n;
if (a==b){
for (int i=1; i<=n; ++i){
if (A[i]%a){ puts("-1"); return 0; }
ans+=_abs(A[i]/a);
}
printf("%lld\n", ans/2);
return 0; }
exgcd(a, b, x_base, y_base); a/=gab; b/=gab;
for (LL i=1; i<=n; ++i){
if (A[i]%gab){ puts("-1"); return 0; }
A[i]/=gab;
x[i]=x_base*A[i], y[i]=y_base*A[i];
k[i]=div3(-_abs(A[i]), _abs(A[i]), x[i], y[i]);
x[i]+=k[i]*b; y[i]-=k[i]*a; //满足ax+by=A,且|x|+|y|最小
ans+=_abs(x[i])+_abs(y[i]);
cntx+=x[i]; //判断x多出了多少
}
if (cntx==0){ printf("%lld\n", ans); return 0; }
cntx/=b; op=cntx>0?-1:1; //k要加cntx 增加的方向是op
for (LL i=1; i<=n; ++i)
q.push(make_pair(_abs(x[i]+op*b)+_abs(y[i]-op*a)-_abs(x[i])-_abs(y[i]), i)); //delta
for (LL i=1; i<=_abs(cntx); ++i){
tmp=q.top(); q.pop();
delta=tmp.first; pos=tmp.second;
ans+=delta; x[pos]+=op*b; y[pos]-=op*a;
delta=_abs(x[pos]+op*b)+_abs(y[pos]-op*a)-_abs(x[pos])-_abs(y[pos]);
q.push(make_pair(delta, pos));
}
printf("%lld\n", ans/2);
return 0;
}
Leveling Ground(数论,三分法,堆)的更多相关文章
- UVALive 6915 Leveling Ground 倍增RMQ
Leveling Ground 题目连接: https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid ...
- BZOJ2800 [Poi2012]Leveling Ground 【扩展欧几里得 + 三分 + 堆】
题目链接 BZOJ2800 题解 区间加极难操作,差分之后可转化为两点一加一减 那么现在问题就将每个点暂时独立开来 先判定每个点是否被\((A,B)\)整除,否则无解 之后我们先将\(A,B\)化为互 ...
- UVALive 6915 J - Leveling Ground
思路: 简单模拟下.从左向右扫描一次,求出挖出该区间空地的花费,并取个最小值即可. 至于怎么求区间内的高度最小值,就用线段树就好了. #include <bits/stdc++.h> #d ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- POI2012题解
POI2012题解 这次的完整的\(17\)道题哟. [BZOJ2788][Poi2012]Festival 很显然可以差分约束建图.这里问的是变量最多有多少种不同的取值. 我们知道,在同一个强连通分 ...
- 历年NOIP回顾
2017.8.18 上午 NOIP2016 day1 T1 95 T2 40 T3 88 我感受到了绝望... T1当时没挂现在挂了. T2打了80的暴力,结果前面两个梯度的暴力全挂,后面两个却过了 ...
- C语言中的栈和堆
原文出处<http://blog.csdn.net/xiayufeng520/article/details/45956305#t0> 栈内存由编译器分配和释放,堆内存由程序分配和释放. ...
- BSS段 data段 text段 堆heap 和 栈stack
BSS段:BSS段(bss segment)通常是指用来存放程序中未初始化的全局变量的一块内存区域.BSS是英文Block Started by Symbol的简称.BSS段属于静态内存分配. 数 ...
- luoguP3235 [HNOI2014]江南乐 数论分块 + 博弈论
感觉其实很水? 题目就是一个Multi SG游戏,只需要预处理出所有的\(sg\)值即可\(O(Tn)\)计算 对于计算\(sg[n]\)而言,显然我们可以枚举划分了\(x\)堆来查看后继状态 那么, ...
随机推荐
- uboot中的TEXT_BASE
转载:http://blog.csdn.net/xxblinux/article/details/6281295 我们都知道U-BOOT分为两个阶段,第一阶段是(~/cpu/arm920t/start ...
- Day3-Python基础3--局部变量和全局变量
一.局部变量 def test(name): print("before change:",name) name = "maqing" #局部变量name,只能 ...
- $timeout()定时器
非常不幸的一点是,人们似乎常常将AngularJS中的$timeOut()函数看做是一个内置的.无须在意的函数.但是,如果你忘记了$timeOut()的回调函数将会造成非常不好的影响,你可能会因此遇到 ...
- python web框架 Django进阶
django 进阶 基础中,一些操作都是手动创建连接的非主流操作,这样显得太low,当然也是为了熟悉这个框架! 实际中,django自带连接数据库和创建app的机制,同时还有更完善的路由系统机制.既然 ...
- 2011-03-17免Oracle客户端连远程Oracle的方法
1.http://www.oracle.com/technetwork/topics/winsoft-085727.html上下载对应版本的instanctclinet zip包 34M 解压后92M ...
- mysql添加用户
增加新用户: 格式:grant select on 数据库.* to 用户名@登录主机 identified by "密码" 例1.增加一个用户test1密码为abc,让他可以在任 ...
- 问题:Oracle 树形遍历;结果:使用oracle进行遍历树操作
使用oracle进行遍历树操作 1:首先数据库中表必须是树形结构的 2:super_department_id 为 department_id 的父节点编号 3:以下语句的执行结果是:depart ...
- Android开发 开启闪光灯 关键代码
在AndroidManifest中注册响应的权限: <uses-permission android:name="android.permission.FLASHLIGHT" ...
- 关于web.xml中的<welcome-file-list>中的默认首页文件
先看我的配置文件: <welcome-file-list> <welcome-file>index.html</welcome-file> </welcome ...
- CentOS 7 下设置DNS
在CentOS 7下,手工设置 /etc/resolv.conf 里的DNS,过了一会,发现被系统重新覆盖或者清除了.和CentOS 6下的设置DNS方法不同,有几种方式: 1.使用全新的命令行工具 ...