题意

约翰准备扩大他的农场,眼前他正在考虑购买N块长方形的土地。如果约翰单买一块土 地,价格就是土地的面积。但他可以选择并购一组土地,并购的价格为这些土地中最大的长 乘以最大的宽。比如约翰并购一块3 × 5和一块5 × 3的土地,他只需要支付5 × 5 = 25元, 比单买合算。 约翰希望买下所有的土地。他发现,将这些土地分成不同的小组来并购可以节省经费。 给定每份土地的尺寸,请你帮助他计算购买所有土地所需的最小费用。

题解

  一道斜率优化

  我们先考虑一下,如果某一块土地的长和宽小于等于另一块土地,那么这两块土地可以合并,这块土地可以和另一块一起买

  所以我们按长为第一关键字,宽为第二关键字,升序排序,那么如果一块土地的长和宽都小于右边的,我们就可以把这块土地忽略不计(相当于合并到另一块里),那么最后留下的土地一定是长度递增,宽度递减的。那么在这一种情况下我们选取的土地一定是连续的一段。为什么呢?假设有$k<j<i$三块土地,那么$w[k]<w[j]<w[i]$且$h[k]>h[j]>h[i]$,那么一起买,花费为$w[i]*h[k]$,而如果不是一起买,即选取的不是连续的区间,比如买$i,k$再买$j$,那么花费就是$w[i]*h[k]+w[j]*h[j]$,不如之前的方案优

  然后就可以列出转移方程$$dp[i]=min\{dp[j]+h[j+1]*w[i]\}$$

  假设$j$比$k$更优,则有$$dp[j]+h[j+1]*w[i]<dp[k]+h[k+1]*w[i]$$

  $$dp[j]-dp[k]<h[k+1]*w[i]-h[j+1]*w[i]$$

  $$\frac{dp[j]-dp[k]}{h[k+1]-h[j+1]}<w[i]$$

  然后就可以上斜率优化了

 //minamoto
#include<iostream>
#include<cstdio>
#include<algorithm>
#define ll long long
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=;
struct node{
int x,y;
inline bool operator <(const node b)const
{return x==b.x?y<b.y:x<b.x;}
}a[N],b[N];
ll f[N];int n,tot,h,t,q[N];
inline double slope(int j,int k){return (f[k]-f[j])/(b[j+].y-b[k+].y);}
int main(){
//freopen("testdata.in","r",stdin);
n=read();
for(int i=;i<=n;++i) a[i].x=read(),a[i].y=read();
sort(a+,a++n);
for(int i=;i<=n;++i){
while(tot&&a[i].y>=b[tot].y) --tot;
b[++tot]=a[i];
}
for(int i=;i<=tot;++i){
while(h<t&&slope(q[h],q[h+])<b[i].x) ++h;
f[i]=f[q[h]]+1ll*b[q[h]+].y*b[i].x;
while(h<t&&slope(q[t],q[t-])>slope(q[t-],i)) --t;q[++t]=i;
}
printf("%lld\n",f[tot]);
return ;
}

洛谷P2900 [USACO08MAR]土地征用Land Acquisition(斜率优化)的更多相关文章

  1. 洛谷 P2900 [USACO08MAR]土地征用Land Acquisition 解题报告

    P2900 [USACO08MAR]土地征用Land Acquisition 题目描述 约翰准备扩大他的农场,眼前他正在考虑购买N块长方形的土地.如果约翰单买一块土 地,价格就是土地的面积.但他可以选 ...

  2. 洛谷P2900 [USACO08MAR]土地征用Land Acquisition(动态规划,斜率优化,决策单调性,线性规划,单调队列)

    洛谷题目传送门 用两种不一样的思路立体地理解斜率优化,你值得拥有. 题意分析 既然所有的土地都要买,那么我们可以考虑到,如果一块土地的宽和高(其实是蒟蒻把长方形立在了平面上)都比另一块要小,那么肯定是 ...

  3. 洛谷2900 [USACO08MAR]土地征用Land Acquisition (斜率优化+dp)

    自闭的一批....为什么斜率优化能这么自闭. 首先看到这个题的第一想法一定是按照一个维度进行排序. 那我们不妨直接按照\(h_i\)排序. 我们令\(dp[i]\)表示到了第\(i\)个矩形的答案是多 ...

  4. 『土地征用 Land Acquisition 斜率优化DP』

    斜率优化DP的综合运用,对斜率优化的新理解. 详细介绍见『玩具装箱TOY 斜率优化DP』 土地征用 Land Acquisition(USACO08MAR) Description Farmer Jo ...

  5. luogu P2900 [USACO08MAR]土地征用Land Acquisition

    写这道题时,预处理部分少打了等号,吓得我以为斜率优化错了或者被卡精了 mmp 首先有一个很明显的结论(逃),就是一个土地如果长(\(x\))与宽(\(y\))都比另一个土地小,那么这个土地一定可以跟那 ...

  6. P2900 [USACO08MAR]土地征用Land Acquisition

    \(\color{#0066ff}{ 题目描述 }\) 约翰准备扩大他的农场,眼前他正在考虑购买N块长方形的土地.如果约翰单买一块土 地,价格就是土地的面积.但他可以选择并购一组土地,并购的价格为这些 ...

  7. 【洛谷 P2900】 [USACO08MAR]土地征用Land Acquisition(斜率优化,单调栈)

    题目链接 双倍经验 设\(H\)表示长,\(W\)表示宽. 若\(H_i<H_j\)且\(W_i<W_j\),显然\(i\)对答案没有贡献. 于是把所有点按\(H\)排序,然后依次加入一个 ...

  8. [LuoguP2900] [USACO08MAR]土地征用(Land Acquisition)

    土地征用 (Link) 约翰准备扩大他的农场,眼前他正在考虑购买N块长方形的土地.如果约翰单买一块土 地,价格就是土地的面积.但他可以选择并购一组土地,并购的价格为这些土地中最大的长 乘以最大的宽.比 ...

  9. [USACO08MAR]土地征用Land Acquisition

    题面在这里 题意 约翰准备扩大他的农场,眼前他正在考虑购买N块长方形的土地. 如果约翰单买一块土地,价格就是土地的面积,但他可以选择并购一组土地, 并购的价格为这些土地中最大的长乘以最大的宽. 给定每 ...

随机推荐

  1. Mysql 5.6 MHA (gtid) on Kylin

    mha on Kylinip hostname repl role mha role192.168.19.69 mysql1 master node192.168.19.73 mysql2 slave ...

  2. linux yum 脚本实现

    yum 位于linux /usr/bin/yum yum命令是python脚本进行编写的(python 2.6) #!/usr/bin/python2.6 import sys try: import ...

  3. python3 中 requests 框架

    原文的文件地址:http://blog.csdn.net/shanzhizi/article/details/50903748 一.安装 Requests 通过pip安装 pip install re ...

  4. 2016.2.28 DataTable用法汇总

    将控件的DataSource转换为DataTable,但是,此控件的DataSource绑定时必须是DataTable,不能是List DataTable dt = (bgvRoutePortion. ...

  5. LNMP 1.2 Nginx编译安装

    Nginx官网是:nginx.org 下载稳定版本 cd /usr/local/src wget http://nginx.org/download/nginx-1.8.0.tar.gz tar zx ...

  6. Go并发原理

    Go语言是为并发而生的语言,Go语言是为数不多的在语言层面实现并发的语言:也正是Go语言的并发特性,吸引了全球无数的开发者. 并发(concurrency)和并行(parallellism) 并发(c ...

  7. kernel下制作动态logo

    kernel下制作动态logo 在uboot中实现logo的好处是反映速度快. 在kernel中实现logo的好处是,不管是android还是什么其他平台,logo显示无需考虑上层平台. 参照三星平台 ...

  8. 认识RESTFul

    背景1. 概念提出者:Fielding2. 全写:Representational State Transfer,(资源的)表现层状态转化?3. http://www.ruanyifeng.com/b ...

  9. sys模块 进度条百分比

    用于提供对Python解释器相关的操作: sys.argv           命令行参数List,第一个元素是程序本身路径 sys.exit(n)        退出程序,正常退出时exit(0) ...

  10. Ajax笔记(二)

    JSON基本概念: JSON:javaScript对象表示法(JavaScript Object Notation) JSON是存储和交换文本信息的语法,类似XML.它采用键值对的方式来组织,易于人们 ...