[USACO09OPEN]牛的数字游戏Cow Digit Game 博弈
题目描述
Bessie is playing a number game against Farmer John, and she wants you to help her achieve victory.
Game i starts with an integer N_i (1 <= N_i <= 1,000,000). Bessie goes first, and then the two players alternate turns. On each turn, a player can subtract either the largest digit or the smallest non-zero digit from the current number to obtain a new number. For example, from 3014 we may subtract either 1 or 4 to obtain either 3013 or 3010, respectively. The game continues until the number becomes 0, at which point the last player to have taken a turn is the winner.
Bessie and FJ play G (1 <= G <= 100) games. Determine, for each game, whether Bessie or FJ will win, assuming that both play perfectly (that is, on each turn, if the current player has a move that will guarantee his or her win, he or she will take it).
Consider a sample game where N_i = 13. Bessie goes first and takes 3, leaving 10. FJ is forced to take 1, leaving 9. Bessie takes the remainder and wins the game.
贝茜和约翰在玩一个数字游戏.贝茜需要你帮助她.
游戏一共进行了G(1≤G≤100)场.第i场游戏开始于一个正整数Ni(l≤Ni≤1,000,000).游
戏规则是这样的:双方轮流操作,将当前的数字减去一个数,这个数可以是当前数字的最大数码,也可以是最小的非0数码.比如当前的数是3014,操作者可以减去1变成3013,也可以减去4变成3010.若干次操作之后,这个数字会变成0.这时候不能再操作的一方为输家. 贝茜总是先开始操作.如果贝茜和约翰都足够聪明,执行最好的策略.请你计算最后的赢家.
比如,一场游戏开始于13.贝茜将13减去3变成10.约翰只能将10减去1变成9.贝茜再将9减去9变成0.最后贝茜赢.
输入输出格式
输入格式:
* Line 1: A single integer: G
* Lines 2..G+1: Line i+1 contains the single integer: N_i
输出格式:
* Lines 1..G: Line i contains 'YES' if Bessie can win game i, and 'NO' otherwise.
输入输出样例
说明
For the first game, Bessie simply takes the number 9 and wins. For the second game, Bessie must take 1 (since she cannot take 0), and then FJ can win by taking 9.
考虑用 sg 函数,
那么 sg[ i ]=mex( sg[ i-min ],sg[ i-max ]);
然后 O(1) 询问即可;
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize("O3")
using namespace std;
#define maxn 1000005
#define inf 0x3f3f3f3f
#define INF 9999999999
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ ll qpow(ll a, ll b, ll c) {
ll ans = 1;
a = a % c;
while (b) {
if (b % 2)ans = ans * a%c;
b /= 2; a = a * a%c;
}
return ans;
} int n;
int sg[maxn];
int vis[10];
int mex() {
for (int i = 0;; i++) {
if (!vis[i])return i;
}
} void init(int Max) {
sg[0] = 0;
for (int i = 1; i <= Max; i++) {
int tmp = i; ms(vis);
int minn = 10, maxx = -1;
while (tmp) {
if(tmp%10!=0)
minn = min(minn, tmp % 10), maxx = max(maxx, tmp % 10);
tmp /= 10;
}
if (maxx != -1)vis[sg[i - maxx]] = 1;
if (minn != 10)vis[sg[i - minn]] = 1;
sg[i] = mex();
}
} int main()
{
//ios::sync_with_stdio(0);
rdint(n); init(maxn);
while (n--) {
int x; rdint(x);
if (sg[x] == 0)cout << "NO" << endl;
else cout << "YES" << endl;
}
return 0;
}
[USACO09OPEN]牛的数字游戏Cow Digit Game 博弈的更多相关文章
- 洛谷 2953 [USACO09OPEN]牛的数字游戏Cow Digit Game
洛谷 2953 [USACO09OPEN]牛的数字游戏Cow Digit Game 题目描述 Bessie is playing a number game against Farmer John, ...
- LuoguP2953 [USACO09OPEN]牛的数字游戏Cow Digit Game(博弈论)
1~9显然,后面平\(A\)过去 #include <iostream> #include <cstdio> #include <cstring> #include ...
- 【Luogu】P2953牛的数字游戏(博弈论)
题目链接 自己乱搞……然后一遍AC啦! 思路从基本的必胜态和必败态开始分析.我们把减去最大数得到的数叫作Max,减去最小数得到的数叫作Min. 那么开始分析. 一.0是必败态. 这个没法解释.题目就这 ...
- 洛谷 [P2953] 牛的数字游戏
SG搜索 n的范围在可以接受的范围内,SG搜索即可 #include <iostream> #include <cstdio> #include <cstring> ...
- BZOJ3404: [Usaco2009 Open]Cow Digit Game又见数字游戏
3404: [Usaco2009 Open]Cow Digit Game又见数字游戏 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 47 Solved ...
- 3404: [Usaco2009 Open]Cow Digit Game又见数字游戏
3404: [Usaco2009 Open]Cow Digit Game又见数字游戏 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 72 Solved ...
- 【BZOJ】3404: [Usaco2009 Open]Cow Digit Game又见数字游戏(博弈论)
http://www.lydsy.com/JudgeOnline/problem.php?id=3404 写挫好几次.... 裸的博弈论即可.. #include <cstdio> #in ...
- BZOJ1666: [Usaco2006 Oct]Another Cow Number Game 奶牛的数字游戏
1666: [Usaco2006 Oct]Another Cow Number Game 奶牛的数字游戏 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 5 ...
- bzoj:1666: [Usaco2006 Oct]Another Cow Number Game 奶牛的数字游戏
Description 奶牛们又在玩一种无聊的数字游戏.输得很郁闷的贝茜想请你写个程序来帮她在开局时预测结果.在游戏的开始,每头牛都会得到一个数N(1<=N<=1,000,000).此时奶 ...
随机推荐
- vue-cli脚手架build目录中的webpack.dev.conf.js配置文件
此文章用来解释vue-cli脚手架build目录中的webpack.dev.conf.js配置文件 此配置文件是vue开发环境的wepack相关配置文件 关于注释 当涉及到较复杂的解释我将通过标识的方 ...
- 新建 FrameMaker API 时引用目录的设置
如果将FDK安装目录下的Sample项目拷贝到其它目录编译,往往会报错 c1083 找不到fapi.h等头文件,或者Link时报错找不到.lib文件. 1.可通过菜单-项目-xxx属性-配置属性-c/ ...
- leetcode559
class Solution { public: int maxDepth(Node* root) { ; if (root != NULL) { queue<Node> Q; Q.pus ...
- 部署和调优 1.7 samba 部署和优化-1
Samba服务可以实现linux上共享一个目录,windows上面访问. 安装 yum install -y samba samba-client 配置文件在 vim /etc/samba/smb.c ...
- 用java代码解决10元喝多少瓶汽水的问题
问题:汽水2元一瓶,四个盖子换一瓶,两个空瓶一瓶,问10元可以喝几瓶?(不许借别人空瓶或瓶盖,但可以先喝汽水再付空酒瓶或瓶盖) 最近同事让笔者看了一道脑筋急转弯的数学题,当然不是很难,只要会加减法应该 ...
- orancle数据库 插入数量 值大于 1000 解决方案
存储过程:当基站ID大于1000的时候,把ID通过存储过程插入表,然后处理 不推荐这么弄,没办法,项目逼到这了,以后尽量避免这样的需求发生! CREATE OR REPLACE PROCEDURE i ...
- 基于aspectj的aop注解操作
- ActiveMQ (一) 介绍与安装
ActiveMQ是消息中间件的一种 ActiveMQ 是Apache出品,最流行的,能力强劲的开源消息总线.ActiveMQ 是一个完全支持JMS1.1和J2EE 1.4规范的 JMS Provide ...
- 关于fragment生命周期的两张图片
图1,fragment的生命周期,图2,fragment生命周期对应activity的生命周期
- C++结构体的定义、初始化和引用
定义: 结构体(struct)是由一系列具有相同类型或不同类型的数据构成的数据集合,也叫结构. 声明一个结构体类型的形式是: struct Student{ //声明一个结构体类型Student in ...