最近在导师的要求下接手了基于欧洲标准的车联网项目中的安全层,需要学习密码学,以及网络安全的相关内容,这里做一个总结

引用的大部分内容为一个西安的大佬(哈哈我老家也是西安的),大佬主页:https://my.csdn.net/qq_30866297

正文:

关于椭圆曲线的基础知识这里不讲,网上很多,下面记录一下重点

一:椭圆曲线上的简单加密/解密

公开密钥算法总是要基于一个数学上的难题。比如RSA 依据的是:给定两个素数p、q 很容易相乘得到n,而对n进行因式分解却相对困难。那椭圆曲线上有什么难题呢?

考虑如下等式:

K=kG [其中 K,G为Ep(a,b)上的点,k为小于n(n是点G的阶)的整数]

不难发现,给定k和G,根据加法法则,计算K很容易;但给定K和G,求k就相对困难了。

这就是椭圆曲线加密算法采用的难题。我们把点G称为基点(base point),k(k<n,n为基点G的阶)称为私有密钥(privte key),K称为公开密钥(public key)。

现在我们描述一个利用椭圆曲线进行加密通信的过程:

1、用户A选定一条椭圆曲线Ep(a,b),并取椭圆曲线上一点,作为基点G。

2、用户A选择一个私有密钥k,并生成公开密钥K=kG。

3、用户A将Ep(a,b)和点K,G传给用户B。

4、用户B接到信息后 ,将待传输的明文编码到Ep(a,b)上一点M(编码方法很多,这里不作讨论),并产生一个随机整数r(r<n)。

5、用户B计算点C1=M+rK;C2=rG。

6、用户B将C1、C2传给用户A。

7、用户A接到信息后,计算C1-kC2,结果就是点M。因为

C1-kC2=M+rK-k(rG)=M+rK-r(kG)=M

再对点M进行解码就可以得到明文。

在这个加密通信中,如果有一个偷窥者H ,他只能看到Ep(a,b)、K、G、C1、C2 而通过K、G 求k 或通过C2、G求r 都是相对困难的。因此,H无法得到A、B间传送的明文信息。

密码学中,描述一条Fp上的椭圆曲线,常用到六个参量:

T=(p,a,b,G,n,h)。

p 、a 、b 用来确定一条椭圆曲线,

G为基点,

n为点G的阶,

h 是椭圆曲线上所有点的个数m与n相除的整数部分

这几个参量取值的选择,直接影响了加密的安全性。参量值一般要求满足以下几个条件:

1、p 当然越大越安全,但越大,计算速度会变慢,200位左右可以满足一般安全要求;

2、p≠n×h;

3、pt≠1 (mod n),1≤t<20;

4、4a3+27b2≠0 (mod p);

5、n 为素数;

6、h≤4。

二:密钥交换算法(Diffie-Hellman)

我做的这个项目貌似要用Diffie-Hellman密钥交换算法,相关的算法还有RS等,这里一起介绍了吧

使用对称加密算法时,密钥交换是个大难题,所以Diffie和Hellman提出了著名的Diffie-Hellman密钥交换算法。

Diffie-Hellman密钥交换算法原理:

Alice与Bob确定两个大素数n和g,这两个数不用保密

Alice选择另一个大随机数x,并计算A如下:A=gx mod n

Alice将A发给Bob

Bob 选择另一个大随机数y,并计算B如下:B=gy mod n

Bob将B发给Alice

计算秘密密钥K1如下:K1=Bx mod n

计算秘密密钥K2如下:K2=Ay mod n

理论上K1=K2,因此Alice和Bob可以用其进行加解密

RSA加密算法是基于这样的数学事实:两个大素数相乘容易,而对得到的乘积求因子则很难。加密过程如下:

(1)选择两个大素数P、Q

(2)计算N=P*Q

(3)选择一个公钥(加密密钥)E,使其不是(P-1)与(Q-1)的因子

(4)选择私钥(解密密钥)D,满足:(D*E) mod (P-1)(Q-1)=1

(5)加密时,明文PT计算密文CT:CT=PTE mod N

(6)解密时,从密文CT计算明文PT:PT=CTDmodN

这篇文章就总结到这里,后面引用http://blog.sciencenet.cn/home.php?mod=space&uid=223843&do=blog&id=452565本文来自文勇刚科学网博客。

指导我接下来毕设的论文写作思路:

个人分类: 安全层实现

椭圆曲线加密和rsa对比的更多相关文章

  1. go加密算法:非对称加密(一)--RSA

    椭圆曲线加密__http://blog.51cto.com/11821908/2057726 // MyRas.go package main import ( "crypto/rand&q ...

  2. 非对称加密技术- RSA算法数学原理分析

    非对称加密技术,在现在网络中,有非常广泛应用.加密技术更是数字货币的基础. 所谓非对称,就是指该算法需要一对密钥,使用其中一个(公钥)加密,则需要用另一个(私钥)才能解密. 但是对于其原理大部分同学应 ...

  3. 信息安全-加密:RSA 算法

    ylbtech-信息安全-加密:RSA 算法 RSA公开密钥密码体制.所谓的公开密钥密码体制就是使用不同的加密密钥与解密密钥,是一种“由已知加密密钥推导出解密密钥在计算上是不可行的”密码体制. 1.返 ...

  4. 加密算法(对称加密)AES、DES (非对称加密)RSA、DSA

    目前主流的加密方式有:(对称加密)AES.DES        (非对称加密)RSA.DSA

  5. openssl 非对称加密DSA,RSA区别与使用介绍(转)

    openssl 非对称加密DSA,RSA区别与使用介绍(转) 博客分类: OS.Linux Security   在日常系统管理工作中,需要作一些加解密的工作,通过openssl工具包就能完成我们很多 ...

  6. php/js/linux: js加密(rsa公钥加密) php解密(rsa私钥解密)

    php/js/linux: js加密(rsa公钥加密) php解密(rsa私钥解密) 一: js rsa 插件 https://github.com/UFO0001/WX_RSA 或者: https: ...

  7. android md5加密与rsa加解密实现代码

    import java.io.UnsupportedEncodingException;import java.security.MessageDigest;import java.security. ...

  8. 【加密】RSA加密之实现

    private void btn_RSA_Click(object sender, EventArgs e) { //第一种方法调用 this.textBox1.Text = RSAEncrypt(& ...

  9. 【加密】RSA加密之算法

    RSA公钥加密算法是1977年由Ron Rivest.Adi Shamirh和LenAdleman在(美国麻省理工学院)开发的. RSA算法是一种非对称密码算法,所谓非对称,就是指该算法需要一对密钥, ...

随机推荐

  1. 安裝 PHP 時出現undefined reference to `libiconv_open’ 之類的錯誤訊息

    在安裝 PHP 到系統中時要是發生「undefined reference to `libiconv_open'」之類的錯誤訊息,那表示在「./configure 」沒抓好一些環境變數值.錯誤發生點在 ...

  2. maven环境、本地仓储配置(下载安装)idea配置maven

    在第一步:下载maven 官网地址:http://maven.apache.org/download.cgi 下载后进行解压 解压成功 第二步:环境配置 我的电脑右键->属性->高级系统设 ...

  3. JavaScript的执行机制

    JavaScript是单线程的,任务的执行时自上而下的,这就有了一个问题,当遇到一个比较耗时的任务时,下面的代码就会被阻塞,这就意味着卡死.所以js是有异步的,它的实现主要是通过事件循环(event ...

  4. HDU 2047 EOF牛肉串

    水到不想整理,线性DP #include <algorithm> #include <iostream> #include <cstring> #include & ...

  5. udp发送广播消息

    import socket if __name__ == '__main__': # 创建udpsocket udp_socket = socket.socket(socket.AF_INET, so ...

  6. hibernate映射实体类查询时数据库空字段赋值给实体类报错的问题

    因为一直报实体类空异常,去网上查了资料只查到了并没有查到数据库空值时不给实体类赋值的属性 异常 org.hibernate.InvalidMappingException: Could not par ...

  7. cacti和nagios监控web平台搭建

    在linux的运维中对服务器的监控,时刻了解服务器的状态是确保服务能够正常允许的条件,linux的服务监控平台有很多, cacti 下面对cacti(仙人掌),一种比较流行的开源监控软件做安装配置 具 ...

  8. (转)Unity 和 Cocos2d-x 越渐流行,国内公司开发「自研游戏引擎」的意义何在?

    分几个角度来说:一.我认为,Unity3D将无可挽回的,或者说,势在必得的,成为接下来很多年内,世界移动领域游戏引擎市场霸主.回顾历史,正如同咱们经历过一次又一次的互联网时代变革一样,x86,wind ...

  9. 初试PHP连接sql server

    最开始想使用 pdo_sqlsrv 拓展,但是一直没成功,本文采用的是 pdo_dblib + freetds. 环境:CentOS 6.8.PHP 5.6.20 freetds wget ftp:/ ...

  10. R-biomaRt使用-代码备份

    目标:使用R脚本从ensembl上下载transcript数据 简单粗暴,直接上代码.biomaRt的介绍晚一点更新. # this file helps extract information fr ...