CF 914 G Sum the Fibonacci —— 子集卷积,FWT
题目:http://codeforces.com/contest/914/problem/G
其实就是把各种都用子集卷积和FWT卷起来算即可;
注意乘 Fibonacci 数组的位置;
子集卷积时不能一边做一边更新卷积的数组!
代码如下:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
int rd()
{
int ret=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=; ch=getchar();}
while(ch>=''&&ch<='')ret=ret*+ch-'',ch=getchar();
return f?ret:-ret;
}
int Max(int x,int y){return x>y?x:y;}
int const xm=(<<)+,mod=1e9+;
int n,p[xm],F[xm],f[][xm],g[xm],h[xm],t[xm],bin[],cnt[xm],inv2,lm;
ll pw(ll a,int b){ll ret=; for(;b;b>>=,a=a*a%mod)if(b&)ret=ret*a%mod; return ret;}
int upt(int x){while(x>=mod)x-=mod; while(x<)x+=mod; return x;}
int cal(int s){int ret=; while(s)ret+=(s&),s>>=; return ret;}
int get(int x){int ret=; while(x)ret++,x>>=; return ret;}
void init()
{
F[]=; F[]=;
for(int i=;i<bin[lm];i++)F[i]=upt(F[i-]+F[i-]);
}
void fmt(int *a,int tp)
{
for(int d=;d<bin[lm];d<<=)
for(int s=;s<bin[lm];s++)
if(s&d)a[s]=upt(a[s]+a[s^d]*tp);
}
void fwt1(int *a,int tp)//&
{
for(int mid=;mid<bin[lm];mid<<=)
for(int j=,len=(mid<<);j<bin[lm];j+=len)
for(int k=;k<mid;k++)
a[j+k]=upt(a[j+k]+a[j+mid+k]*tp);
}
void fwt2(int *a,int tp)//^
{
for(int mid=;mid<bin[lm];mid<<=)
for(int j=,len=(mid<<);j<bin[lm];j+=len)
for(int k=;k<mid;k++)
{
int x=a[j+k],y=a[j+mid+k];
a[j+k]=upt(x+y); a[j+mid+k]=upt(x-y);
if(tp==-)a[j+k]=(ll)a[j+k]*inv2%mod,a[j+mid+k]=(ll)a[j+mid+k]*inv2%mod;
}
}
int main()
{
n=rd(); lm=;
bin[]=; for(int i=;i<=lm;i++)bin[i]=bin[i-]*;
for(int s=;s<bin[lm];s++)cnt[s]=cal(s);
int mx=;
for(int i=,x;i<=n;i++)x=rd(),p[x]++,mx=Max(mx,x);
lm=get(mx)+; init();
for(int s=;s<bin[lm];s++)f[cnt[s]][s]=p[s];
for(int i=;i<lm;i++)fmt(f[i],);
/*
for(int i=1;i<lm;i++)
{
for(int j=0;j<=i;j++)
for(int s=0;s<bin[lm];s++)
f[i][s]=(f[i][s]+(ll)f[j][s]*f[i-j][s])%mod;
for(int s=0;s<bin[lm];s++)if(cnt[s]!=i)f[i][s]=0;
}
for(int i=0;i<lm;i++)fmt(f[i],-1);
for(int s=0;s<bin[lm];s++)g[s]=f[cnt[s]][s];
*/
for(int i=;i<lm;i++)
{
memset(t,,sizeof t);
for(int j=;j<=i;j++)
for(int s=;s<bin[lm];s++)
t[s]=(t[s]+(ll)f[j][s]*f[i-j][s])%mod;
fmt(t,-);
for(int s=;s<bin[lm];s++)
if(cnt[s]==i)g[s]=upt(g[s]+t[s]);
} for(int s=;s<bin[lm];s++)h[s]=p[s];
inv2=pw(,mod-); fwt2(h,);
for(int s=;s<bin[lm];s++)h[s]=(ll)h[s]*h[s]%mod;
fwt2(h,-); for(int s=;s<bin[lm];s++)g[s]=(ll)g[s]*F[s]%mod;
for(int s=;s<bin[lm];s++)h[s]=(ll)h[s]*F[s]%mod;
for(int s=;s<bin[lm];s++)p[s]=(ll)p[s]*F[s]%mod;
fwt1(g,); fwt1(h,); fwt1(p,);
for(int s=;s<bin[lm];s++)g[s]=(ll)g[s]*h[s]%mod*p[s]%mod;
fwt1(g,-); int ans=;
for(int i=;i<lm;i++)ans=upt(ans+g[bin[i]]);
printf("%d\n",ans);
return ;
}
CF 914 G Sum the Fibonacci —— 子集卷积,FWT的更多相关文章
- CF 914G Sum the Fibonacci——子集卷积
题目:http://codeforces.com/contest/914/problem/G 第一个括号可以子集卷积:第三个括号可以用 FWT 异或卷积:这样算出选两个数组成 x 的方案数:三个部分的 ...
- Codecraft-18 and Codeforces Round #458 (Div. 1 + Div. 2, combined)G. Sum the Fibonacci
题意:给一个数组s,求\(f(s_a | s_b) * f(s_c) * f(s_d \oplus s_e)\),f是斐波那契数列,而且要满足\(s_a\&s_b==0\),\((s_a | ...
- @总结 - 2@ 位运算卷积/子集卷积 —— FWT/FMT
目录 @0 - 参考资料@ @1 - 异或卷积概念及性质@ @2 - 快速沃尔什正变换(异或)@ @3 - 快速沃尔什逆变换(异或)@ @4 - 与卷积.或卷积@ @5 - 参考代码实现@ @6 - ...
- CF914G Sum the Fibonacci (快速沃尔什变换FWT + 子集卷积)
题面 题解 这是一道FWT和子集卷积的应用题. 我们先设 cnt[x] 表示 Si = x 的 i 的数量,那么 这里的Nab[x]指满足条件的 Sa|Sb=x.Sa&Sb=0 的(a,b)二 ...
- CF914G Sum the Fibonacci FWT、子集卷积
传送门 一道良心的练习FWT和子集卷积的板子-- 具体来说就是先把所有满足\(s_a \& s_b = 0\)的\(s_a \mid s_b\)的值用子集卷积算出来,将所有\(s_a \opl ...
- 【codeforces914G】Sum the Fibonacci FWT+FST(快速子集变换)
题目描述 给出一个长度为 $n$ 的序列 $\{s\}$ ,对于所有满足以下条件的五元组 $(a,b,c,d,e)$ : $1\le a,b,c,d,e\le n$ : $(s_a|s_b)\& ...
- 【CF914G】Sum the Fibonacci 快速??变换模板
[CF914G]Sum the Fibonacci 题解:给你一个长度为n的数组s.定义五元组(a,b,c,d,e)是合法的当且仅当: 1. $1\le a,b,c,d,e\le n$2. $(s_a ...
- UOJ #348 州区划分 —— 状压DP+子集卷积
题目:http://uoj.ac/problem/348 一开始可以 3^n 子集DP,枚举一种状态的最后一个集合是什么来转移: 设 \( f[s] \) 表示 \( s \) 集合内的点都划分好了, ...
- Future Failure CodeForces - 838C (博弈论,子集卷积)
大意: 两人轮流操作一个长$n$, 只含前$k$种小写字母的串, 每次操作删除一个字符或者将整个串重排, 每次操作后得到的串不能和之前出现过的串相同, 求多少种串能使先手必胜. 找下规律发现$n$为奇 ...
随机推荐
- 前端开发中js变量定义及命名的规范建议
关于变量定义及命名 现在谈谈关于变量及方法等的命名,没有硬性规定,但为了规范,遵循一些约定还是很有必要的. 变量定义:好的做法是把将要使用的变量名用一个var关键字一并定义在代码开头,变量名间用逗号隔 ...
- Qt插件开发入门(两种方法:High-Level API接口,Low-Level API接口)
Qt中为我们提供了两种开发插件的方式.一种是使用High-Level API接口,一种是使用Low-Level API接口.所谓High-Level API 是指通过继承Qt为我们提供的特定的插件基类 ...
- vue 指令系统的使用
所谓指令系统,大家可以联想咱们的cmd命令行工具,只要我输入一条正确的指令,系统就开始干活了. 在vue中,指令系统,设置一些命令之后,来操作我们的数据属性,并展示到我们的DOM上. OK,接下来我们 ...
- GTK+重拾--07 GTK+中的事件
(一):写在前面 在这一个小节中,我们主要是学习GTK+2.0中最重要的部分.就是信号和事件.GTK+函数工具库是基于"事件"系统的.全部的GUI应用都是基于"事件&qu ...
- CONVERT_DATE_INPUT
[转自http://www.cnblogs.com/VerySky/articles/2226862.html] 通过 Function Module 将外部日期转换为内部日期所属 Function ...
- cache:annotation-driven" 的前缀 "cache" 未绑定
问题: Caused by: org.springframework.beans.factory.xml.XmlBeanDefinitionStoreException: Line 29 in XML ...
- height()、innerHeight()、outerHeight()函数的区别详解
具体参考博客:http://www.365mini.com/page/jquery-height-vs-innerheight-vs-outerheight.htm
- error in static/js/xxx.js from UglifyJs Unpected token: punc() [static/js/xxx.js]
出现问题 使用vue+element-ui+webpack开发项目时,Jenkins构建出现报错error in static/js/xxx.js from UglifyJs Unpected tok ...
- Python 3 接口与归一化设计
一.接口与归一化设计: 1.归一化让使用者无需关心对象的类是什么,只需要知道这些对象都具备某些功能就可以了,这极大地降低了使用者的使用难度. 2.归一化使得高层的外部使用者可以不加区分的处理所有接口兼 ...
- css 行内元素 块元素 替换元素 非替换元素 以及这些元素的width height margin padding 特性
一.各种元素的width height margin padding 特性(具体css元素的分来参看二) 1.块级元素 width. height. margin的四个方向. padding的四个方向 ...