bzoj 2118: 墨墨的等式 spfa
题目:
墨墨突然对等式很感兴趣,他正在研究\(a_1x_1+a_2y_2+ ... +a_nx_n=B\)存在非负整数解的条件,他要求你编写一个程序,给定\(N,\{a_n\}\)以及\(B\)的取值范围,求出有多少\(B\)可以使等式存在非负整数解。
题解:
首先我们发现 : 如果我们能够通过选取一些数凑到\(x\),那么我们肯定能够凑到$x + a_1 ,x + 2a_1 ,x + 3a_1, ... \(
所以我们考虑在\)mod a_1\(的剩余系下进行操作.
记\)f[x]\(表示取到可以用\)k*a_1 + x\(表示的数的最小的\)k$
这个dp我们可以直接利用最短路算法求解.
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
inline void read(ll &x){
x=0;char ch;bool flag = false;
while(ch=getchar(),ch<'!');if(ch == '-') ch=getchar(),flag = true;
while(x=10*x+ch-'0',ch=getchar(),ch>'!');if(flag) x=-x;
}
const ll maxn = 500500;
const ll lim = maxn<<1;
ll a[maxn],dis[maxn],q[lim + 10],l,r,n;
bool inq[maxn];
void spfa(){
memset(dis,0x3f,sizeof dis);
l = 0;r = -1;
dis[0] = 0;q[++r] = 0;
inq[0] = true;
while(l <= r){
ll u = q[l++];
for(ll i=2;i<=n;++i){
ll v = (u + a[i]) % a[1];
if( dis[v] > dis[u] + (u+a[i])/a[1]){
dis[v] = dis[u] + (u+a[i])/a[1];
if(!inq[v]){
q[++r] = v;
inq[v] = true;
}
}
}inq[u] = false;
}
}
inline ll calc(ll x){
ll ret = 0;
for(ll i=0;i<a[1];++i){
ret += max((x/a[1] + ((x % a[1]) >= i)) - dis[i],0LL);
}return ret;
}
int main(){
ll L,R;read(n);read(L);read(R);
ll pos = 0;
for(ll i=1;i<=n;++i){
read(a[i]);
if(pos == 0 || a[pos] > a[i]) pos = i;
}swap(a[pos],a[1]);
if(a[1] == 0) return puts("0");
spfa();
printf("%lld\n",calc(R) - calc(L-1));
getchar();getchar();
return 0;
}
bzoj 2118: 墨墨的等式 spfa的更多相关文章
- 【BZOJ 2118】 墨墨的等式(Dijkstra)
BZOJ2118 墨墨的等式 题链:http://www.lydsy.com/JudgeOnline/problem.php?id=2118 Description 墨墨突然对等式很感兴趣,他正在研究 ...
- 【BZOJ 2118】墨墨的等式
http://www.lydsy.com/JudgeOnline/problem.php?id=2118 最短路就是为了找到最小的$x$满足$x=k×a_{min}+d,0≤d<a_{min}$ ...
- 数论+spfa算法 bzoj 2118 墨墨的等式
2118: 墨墨的等式 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1283 Solved: 496 Description 墨墨突然对等式很感兴 ...
- bzoj 2118 墨墨的等式 - 图论最短路建模
墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在非负整数解. Input ...
- 【BZOJ 2118】 2118: 墨墨的等式 (最短路)
2118: 墨墨的等式 Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求 ...
- bzoj 2118: 墨墨的等式
Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+-+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在 ...
- [图论训练]BZOJ 2118: 墨墨的等式 【最短路】
Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在 ...
- 【BZOJ2118】墨墨的等式(最短路)
[BZOJ2118]墨墨的等式(最短路) 题面 BZOJ 洛谷 题解 和跳楼机那题是一样的. 只不过走的方式从\(3\)种变成了\(n\)种而已,其他的根本没有区别了. #include<ios ...
- BZOJ2118: 墨墨的等式(同余类BFS)(数学转为图论题)
2118: 墨墨的等式 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2944 Solved: 1206[Submit][Status][Discu ...
随机推荐
- Sitemesh3的使用心得
项目中用到了sitemesh3,就把使用心得记下来,至于配置之类的,官方网站都有,这里只是写下自己对它的理解,方便再次理解, sitemesh是基于过滤器的原理,拦截到符合配置文件中配置的路径,然后会 ...
- Linq实现between拓展
先写一个拓展方法 static class Ext { public static IQueryable<TSource> Between<TSource, TKey> (th ...
- ArcGIS API for javascript Bookmarks(书签)示例2
1.运行效果图 说明:这篇博文介绍的书签位于地图之上 有关博文中引用的API文件 怎么iis上部署,请参考我前面的博文 2.HTML代码 <!DOCTYPE html> <html ...
- bash编程基础
bash变量 变量命名: 1.不能使用程序中的关键字(保留字) 2.只能使用数字.字母和下划线,且不能以数字开头 3.要见名知义 变量类型: 数值型:精确数值(整数),近似数值(浮点型) 字符型:ch ...
- Delphi 7里Messages.pas里所有104种重定义消息种类,180种不同的消息名称
Delphi 7里Messages.pas里所有消息.经统计,共104种重定义消息种类,方便使用,180种不同的消息名称.省得像VC里一样,处处自己解析wParam和LParam参数进行分析.有空我要 ...
- 【oracle案例】ORA-01722
1.1. ORA-01722 日期:2014-06-05 14:09 环境:測试环境 [情景描写叙述] 在数据库的升级过程中,运行SQL> @?/rdbms/admin/catupgrd ...
- jQuery源码分析_工具方法(学习笔记)
expando:生成唯一JQ字符串(内部使用) noConflict():防止冲突 isReady:DOM是否加载完成(内部) readyWait:等待多少文件的计数器(内部) holdReady() ...
- c++学习笔记(网上资料)
C++笔记 2007-3-22 1. 程序 —— 可执行文件,人发送给计算机的一组指令. 硬件指令是二进制, ...
- [原创] hadoop学习笔记:wordcout程序实践
看了官网上的示例:但是给的不是很清楚,这里依托官网给出的示例,加上自己的实践,解析worcount程序的操作 1.首先你的确定你的集群正确安装,并且启动你的集群,应为这个是hadoop2.6.0,所以 ...
- android OTG【转】
本文转载自:http://blog.csdn.net/xubin341719/article/details/7707056 一.OTG的概念 OTG是On-The-Go的缩写,是近年发展起来的技术, ...