题目大意:
  给定一个长度为$n(1\leq n\leq10^5)$的正整数序列$s(1\leq s_i\leq n)$,对于$m(1\leq m\leq10^)$次询问$l,r$,每次求区间$[s_l,\ldots,s_r]$中,众数出现的次数以及众数的个数。

思路:
  莫队。
  对于询问$l,r$,维护每个数$s_i$出现的次数$cnt1[i]$以及每个$cnt1[i]$出现的次数$cnt2[i]$。

 #include<cmath>
#include<cstdio>
#include<cctype>
#include<algorithm>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
const int N=,M=;
int a[N],belong[M],cnt1[N],cnt2[N],tmp,ans1[M],ans2[M];
struct Query {
int l,r,id;
bool operator < (const Query &another) const {
if(belong[l]==belong[another.l]) return belong[r]<belong[another.r];
return belong[l]<belong[another.l];
}
};
Query q[M];
inline void ins(const int &x) {
cnt2[cnt1[a[x]]++]--;
cnt2[cnt1[a[x]]]++;
tmp=std::max(tmp,cnt1[a[x]]);
}
inline void del(const int &x) {
cnt2[cnt1[a[x]]--]--;
cnt2[cnt1[a[x]]]++;
while(!cnt2[tmp]) tmp--;
}
int main() {
const int n=getint(),m=getint(),block=sqrt(n);
for(register int i=;i<=n;i++) {
a[i]=getint();
belong[i]=i/block;
}
for(register int i=;i<m;i++) {
const int l=getint(),r=getint();
q[i]=(Query){l,r,i};
}
std::sort(&q[],&q[m]);
for(register int i=,l=,r=;i<m;i++) {
while(l<q[i].l) del(l++);
while(l>q[i].l) ins(--l);
while(r<q[i].r) ins(++r);
while(r>q[i].r) del(r--);
ans1[q[i].id]=tmp;
ans2[q[i].id]=cnt2[tmp];
}
for(register int i=;i<m;i++) {
printf("%d %d\n",ans1[i],ans2[i]);
}
return ;
}

[ZJb417]区间众数的更多相关文章

  1. 蒲公英(bzoj2724)(分块+区间众数)

    Input Output Sample Input 6 3 1 2 3 2 1 2 1 5 3 6 1 5 Sample Output 1 2 1 HINT \(n <= 40000\),$ m ...

  2. 【BZOJ 2724】 2724: [Violet 6]蒲公英 (区间众数不带修改版本)

    2724: [Violet 6]蒲公英 Time Limit: 40 Sec  Memory Limit: 512 MBSubmit: 1908  Solved: 678 Description In ...

  3. luogu4168蒲公英(区间众数)

    luogu4168蒲公英(区间众数) 给定n个数,m个区间询问,问每个询问中的众数是什么. 题面很漂亮,大家可以去看一下. 对于区间众数,由于区间的答案不能由子区间简单的找出来,所以似乎不能用树形结构 ...

  4. 洛谷P4168 蒲公英 分块处理区间众数模板

    题面. 许久以前我还不怎么去机房的时候,一位大佬好像一直在做这道题,他称这道题目为"大分块". 其实这道题目的思想不只可以用于处理区间众数,还可以处理很多区间数值相关问题. 让我们 ...

  5. BZOJ 2724: [Violet 6]蒲公英 [分块 区间众数]

    传送门 题面太美不忍不放 分块分块 这种题的一个特点是只有查询,通常需要预处理:加入修改的话需要暴力重构预处理 预处理$f[i][j]$为第i块到第j块的众数,显然$f[i][j]=max{f[i][ ...

  6. bzoj 2724 在线区间众数

    如果不是在线,就是裸的莫队. 但这道题要求在线,然后就不会了.. 标程: http://hi.baidu.com/__vani/item/ecc63f3527395283c2cf2945 算法主要是分 ...

  7. P4168 [Violet]蒲公英 区间众数

    $ \color{#0066ff}{ 题目描述 }$ 在乡下的小路旁种着许多蒲公英,而我们的问题正是与这些蒲公英有关. 为了简化起见,我们把所有的蒲公英看成一个长度为n的序列 \((a_1,a_2.. ...

  8. bzoj2724: [Violet 6]蒲公英 分块 区间众数 论algorithm与vector的正确打开方式

    这个,要处理各个数的话得先离散,我用的桶. 我们先把每个块里的和每个块区间的众数找出来,那么在查询的时候,可能成为[l,r]区间的众数的数只有中间区间的众数和两边的数. 证明:若不是这里的数连区间的众 ...

  9. loj 数列分块入门 6 9(区间众数)

    6 题意 给出一个长为\(n\)的数列,以及\(n\)个操作,操作涉及单点插入,单点询问,数据随机生成. 题解 参考:http://hzwer.com/8053.html 每个块内用一个\(vecto ...

随机推荐

  1. [译]9-spring bean的生命周期

    spring中bean的生命周期比较容易理解.bean在实例化之后有时需要调用某个初始化方法进行一些初始化的工作.同样的 ,当bean在销毁之前有时需要做一些资源回收的工作. 尽管bean在实例化和销 ...

  2. Metadata 的概念

    https://www.ibm.com/developerworks/cn/cloud/library/1509_liukg_openstackmeta/ http://mathslinux.org/ ...

  3. 【志银】Dev-Cpp配置OpenGL图形库(成功版本:Dev-Cpp 5.7.1 MinGW 4.8.1)

    ★配置前须知:Dev-Cpp自带OpenGL的使用和OpenGL简介 (附Dev-Cpp下载地址:http://sourceforge.net/projects/orwelldevcpp/?sourc ...

  4. iterm2+vim使用

    iterm2+vim 终端切换为iterm2+zsh+oh my zsh,确实好用. I term2常用快捷键记录 新建标签:cmd+t 关闭标签:cmd+w 切换标签:cmd+数字, 切换全屏:cm ...

  5. 聊聊、Spring WebApplicationInitializer

    说到 WebApplicationInitializer,这个接口是为了实现代码配置 Web 功能.只要实现了这个接口,那么就可以实现 Filter,Servlet,Listener 等配置,跟在 x ...

  6. CentOS下Apache虚拟主机配置

    通过phpinfo可以看到Apache安装的目录 修改配置文件,首先将配置文件备份 编辑httpd.conf,并找到虚拟路径配置的部分 vi httpd.conf 在vi下先按esc在键入 :/vho ...

  7. 牛客 2018NOIP 模你赛2 T2 分糖果 解题报告

    分糖果 链接:https://www.nowcoder.com/acm/contest/173/B 来源:牛客网 题目描述 \(N\) 个小朋友围成一圈,你有无穷个糖果,想把其中一些分给他们. 从某个 ...

  8. "todoList妙味"学习总结

    1.v-bind  主要用于属性绑定 :class="{completed: item.isChecked}",它会将{}里面的内容解析为js表达式   2.vue提供了一组方法, ...

  9. linux mint 自动挂载windows的D盘和E盘

    终端敲udisksctl mount -p block_devices/sda后双击tab键补全分区,如下:    如我的E盘是sda6,执行     udisksctl mount -p block ...

  10. MySQL数据库从windows迁移到linux

    前几天搭建了lamp环境,想把之前写的小东西迁到linux上运行,涉及到把mysql数据库的文件迁移到linux上,直接用fileZilla传过去应该不行,我试了下,反正没成功.下面是我采用的方法: ...