Qin Shi Huang's National Road System

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 6407    Accepted Submission(s): 2239

Problem Description
During
the Warring States Period of ancient China(476 BC to 221 BC), there
were seven kingdoms in China ---- they were Qi, Chu, Yan, Han, Zhao, Wei
and Qin. Ying Zheng was the king of the kingdom Qin. Through 9 years of
wars, he finally conquered all six other kingdoms and became the first
emperor of a unified China in 221 BC. That was Qin dynasty ---- the
first imperial dynasty of China(not to be confused with the Qing
Dynasty, the last dynasty of China). So Ying Zheng named himself "Qin
Shi Huang" because "Shi Huang" means "the first emperor" in Chinese.

Qin
Shi Huang undertook gigantic projects, including the first version of
the Great Wall of China, the now famous city-sized mausoleum guarded by a
life-sized Terracotta Army, and a massive national road system. There
is a story about the road system:
There were n cities in China and
Qin Shi Huang wanted them all be connected by n-1 roads, in order that
he could go to every city from the capital city Xianyang.
Although
Qin Shi Huang was a tyrant, he wanted the total length of all roads to
be minimum,so that the road system may not cost too many people's life. A
daoshi (some kind of monk) named Xu Fu told Qin Shi Huang that he could
build a road by magic and that magic road would cost no money and no
labor. But Xu Fu could only build ONE magic road for Qin Shi Huang. So
Qin Shi Huang had to decide where to build the magic road. Qin Shi Huang
wanted the total length of all none magic roads to be as small as
possible, but Xu Fu wanted the magic road to benefit as many people as
possible ---- So Qin Shi Huang decided that the value of A/B (the ratio
of A to B) must be the maximum, which A is the total population of the
two cites connected by the magic road, and B is the total length of none
magic roads.
Would you help Qin Shi Huang?
A city can be considered as a point, and a road can be considered as a line segment connecting two points.
 
Input
The first line contains an integer t meaning that there are t test cases(t <= 10).
For each test case:
The first line is an integer n meaning that there are n cities(2 < n <= 1000).
Then
n lines follow. Each line contains three integers X, Y and P ( 0 <=
X, Y <= 1000, 0 < P < 100000). (X, Y) is the coordinate of a
city and P is the population of that city.
It is guaranteed that each city has a distinct location.
 
Output
For
each test case, print a line indicating the above mentioned maximum
ratio A/B. The result should be rounded to 2 digits after decimal point.
 
Sample Input
2
4
1 1 20
1 2 30
200 2 80
200 1 100
3
1 1 20
1 2 30
2 2 40
 
Sample Output
65.00
70.00
题意:秦朝有n个城市,需要修建一些道路让任意两个城市(每个城市都有人口)都可以联通,徐福可以用用法力修一条路,这条路不需要劳动力,秦始皇希望其他的道路总长度
B尽量短,还希望连接的两个城市人口之和A尽量大,找到最大的A/B。
题解:这题的做法是去枚举每条边,如果枚举的这条边在最小生成树上,那么结果为 person[i]+person[j]/(MST-graph[i][j])
如果没在最小生成树上,那么加进去之后我们要删掉一条边,我们肯定是要i, j所在的环里面最大的边,这里就要用到次小生成树里面的path数组了. 结果为person[i]+person[j]/(MST-path[i][j])因为i - j不需要花费,所以不必再加上去.
#include <stdio.h>
#include <algorithm>
#include <string.h>
#include <math.h>
using namespace std;
typedef double type;
const int N = ;
const double INF = ;
struct Point
{
int x,y;
} p[N];
double graph[N][N];
int person[N];
int n,m;
int pre[N];
type path[N][N],low[N]; ///path[i][j]用于记录i到j路径上的权值最大的边
bool vis[N],used[N][N];
type prim(int pos,int n){
memset(used,false,sizeof(used));
memset(vis,false,sizeof(vis));
memset(path,,sizeof(path));
vis[pos]=true;
type cost = ;
for(int i=;i<=n;i++){
low[i]= graph[pos][i];
pre[i]=;
}
low[pos]=;
for(int i=;i<n;i++){
type Min = INF;
for(int j=;j<=n;j++){
if(!vis[j]&&low[j]<Min){
pos = j;
Min = low[j];
}
}
used[pre[pos]][pos] = used[pos][pre[pos]] = true;
cost+= Min;
vis[pos] = true;
for(int j=;j<=n;j++){
if(vis[j]&&j!=pos){
path[pos][j] = path[j][pos] = max(low[pos],path[j][pre[pos]]);
}
if(!vis[j]&&low[j]>graph[pos][j]){
low[j]=graph[pos][j];
pre[j] = pos;
}
}
}
return cost;
}
double dis(Point a,Point b)
{
return sqrt(1.0*((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y)));
}
void init()
{
for(int i=; i<=n; i++)
{
for(int j=; j<=n; j++)
{
if(i==j) graph[i][j] = ;
else graph[i][j] = INF;
}
}
} int main()
{
int tcase;
scanf("%d",&tcase);
while(tcase--)
{
scanf("%d",&n);
init();
for(int i=; i<=n; i++)
{
scanf("%d%d%d",&p[i].x,&p[i].y,&person[i]);
}
for(int i=;i<=n;i++){
for(int j=i+;j<=n;j++){
graph[i][j] = graph[j][i] = dis(p[i],p[j]);
}
}
double MST = prim(,n);
double Max = -;
for(int i=;i<=n;i++){ ///枚举所有的边
for(int j=;j<=n;j++){
if(i!=j){
if(used[i][j]){ ///如果枚举的边属于最小生成树,那么结果为 A/(MST-此边)
Max = max(Max,(person[i]+person[j])/(MST-graph[i][j]));
}else{ ///如果枚举的边不属于最小生成树,那么必定要删掉最小生成树中的一条边,删掉的肯定就是i-j之间最长的那条
Max = max(Max,(person[i]+person[j])/(MST-path[i][j]));
}
} }
}
printf("%.2lf\n",Max);
}
return ;
}

hdu 4081(次小生成树)的更多相关文章

  1. hdu 4081 Qin Shi Huang's National Road System(次小生成树prim)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4081 题意:有n个城市,秦始皇要修用n-1条路把它们连起来,要求从任一点出发,都可以到达其它的任意点. ...

  2. HDU 4081 Qin Shi Huang's National Road System 次小生成树变种

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  3. hdu 4081 Qin Shi Huang's National Road System (次小生成树)

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  4. HDU 4081 Qin Shi Huang's National Road System [次小生成树]

    题意: 秦始皇要建路,一共有n个城市,建n-1条路连接. 给了n个城市的坐标和每个城市的人数. 然后建n-2条正常路和n-1条魔法路,最后求A/B的最大值. A代表所建的魔法路的连接的城市的市民的人数 ...

  5. HDU 4081Qin Shi Huang's National Road System(次小生成树)

    题目大意: 有n个城市,秦始皇要修用n-1条路把它们连起来,要求从任一点出发,都可以到达其它的任意点.秦始皇希望这所有n-1条路长度之和最短.然后徐福突然有冒出来,说是他有魔法,可以不用人力.财力就变 ...

  6. HDU 4756 Install Air Conditioning(次小生成树)

    题目大意:给你n个点然后让你求出去掉一条边之后所形成的最小生成树. 比較基础的次小生成树吧. ..先prime一遍求出最小生成树.在dfs求出次小生成树. Install Air Conditioni ...

  7. [kuangbin带你飞]专题八 生成树 - 次小生成树部分

    百度了好多自学到了次小生成树 理解后其实也很简单 求最小生成树的办法目前遇到了两种 1 prim 记录下两点之间连线中的最长段 F[i][k] 之后枚举两点 若两点之间存在没有在最小生成树中的边 那么 ...

  8. hdu4081 次小生成树变形

    pid=4081">http://acm.hdu.edu.cn/showproblem.php?pid=4081 Problem Description During the Warr ...

  9. kuangbin带你飞 生成树专题 : 次小生成树; 最小树形图;生成树计数

    第一个部分 前4题 次小生成树 算法:首先如果生成了最小生成树,那么这些树上的所有的边都进行标记.标记为树边. 接下来进行枚举,枚举任意一条不在MST上的边,如果加入这条边,那么肯定会在这棵树上形成一 ...

随机推荐

  1. SpringMVC---applicationContext.xml配置详解

    <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.sp ...

  2. Eclipse 创建 Java 类---Eclipse教程第10课

    打开新建 Java 类向导 你可以使用新建 Java 类向导来创建 Java 类,可以通过以下途径打开 Java 类向导: 点击 "File" 菜单并选择 New > Cla ...

  3. 解决NSTimer循环引用

    NSTimer常见用法 @interface XXClass : NSObject - (void)start; - (void)stop; @end @implementation XXClass ...

  4. python学习笔记七:浅拷贝深拷贝

    原理 浅拷贝 import copy b = copy.copy(a) demo: >>> a=[1,['a']] >>> b=a >>> c=c ...

  5. 【Binary Search Tree Iterator 】cpp

    题目: Implement an iterator over a binary search tree (BST). Your iterator will be initialized with th ...

  6. python之urllib.request.urlopen(url)报错urllib.error.HTTPError: HTTP Error 403: Forbidden处理及引申浏览器User Agent处理

    最近在跟着院内大神学习python的过程中,发现使用urllib.request.urlopen(url)请求服务器是报错: 在园子里找原因,发现原因为: 只会收到一个单纯的对于该页面访问的请求,但是 ...

  7. python 3 直接使用reload函数报错

    reload()是python2 的内置函数可以直接使用,但是python3 直接使用此函数报错,需要导入importlib 模块 from importlib import reload

  8. 孤荷凌寒自学python第十四天python代码的书写规范与条件语句及判断条件式

    孤荷凌寒自学python第十四天python代码的书写规范与条件语句及判断条件式 (完整学习过程屏幕记录视频地址在文末,手写笔记在文末) 在我学习过的所有语言中,对VB系的语言比较喜欢,而对C系和J系 ...

  9. Windows添加自定义服务、批处理文件开机自启动方法

    [Windows 添加自定义服务方法]: 1.使用Windows服务工具instsrv.exe与srvany.exe: 参考:https://wenku.baidu.com/view/44a6e6f8 ...

  10. HDU 4109 Instrction Arrangement(DAG上的最长路)

    把点编号改成1-N,加一点0,从0点到之前任意入度为0的点之间连一条边权为0的边,求0点到所有点的最长路. SPFA模板留底用 #include <cstdio> #include < ...