「模拟赛20180307」三元组 exclaim 枚举+树状数组
题目描述
给定 \(n,k\) ,求有多少个三元组 \((a,b,c)\) 满足 \(1≤a≤b≤c≤n\)且\(a + b^2 ≡ c^3\ (mod\ k)\)。
输入
多组数据,第一行数据组数\(T\)。
每组数据两个整数,\(n\)和\(k\)。
输出
\(T\)行,每行一个整数,表示满足条件的三元组的个数。
样例
样例输入
1
10 7
样例输出
27
//为什么老被和谐啊
数据范围
\(1≤n,k≤10^5\)
\(T≤400\)
时间限制\(4s\)
题解
与其他学校互测,然后做题感觉很不友好……
这道题数据很有特点(哪里很有特点了),\(10^5\)显然是一个象征性的数字,它意味着\(O(n\ log\ n)\)是可以过的(这么大的\(T\)被无视了啊)。
那么很自然的想到,这个式子并没有什么规律(我也很无奈啊),我们可以考虑枚举\(a,b,c\)中的\(1\)个。
但是我们选择哪一个比较好呢?容易想到,应该是\(c\),它的次数最高,不易计算。
接下来考虑一个简化的问题,如果不取余\(k\),该怎么办?
对于一个数\(b\),由于\(1≤a≤b\),显然\(c^3\)只有在\([b^2+1,b^2+b]\)范围内才有解,而且是唯一解。
所以每一个\(b\)可以为在\([b^2+1,b^2+b]\)的\(c^3\)提供一个解,这不就是区间增加一个值吗?树状数组即可做到。
再考虑取余\(k\)时,发现情况如出一辙,一样的做就可以了。唯一一个问题就是,\([b^2+1,b^2+b]\)可能长度超过了\(k\)。
这时能发现长度超过\(k\)后完全覆盖了所有区域,任何一个\(c\)都可以使用这个\(b\),我们只需要一个计数器\(count\),每次增加\(\left \lfloor\frac{b}{k}\right \rfloor\)。
现在,这道题的解法就呼之欲出了。我们从小到大枚举\(c\),先在树状数组\((tree)\)中\([c^2+1,c^2+c]\)的区间加上\(1\),并更新\(count\),答案就等于\(tree[c^3\%k]+count\)。时间复杂度为\(O(Tn\ log\ n)\)(再说一次请无视\(T\)的大小)
\(Code:\)
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define N 100005
#define ll long long
int T, n, mod;
ll ans, now, t[N];
void update(int x, int v)
{
for (int i = x; i <= mod; i += i & -i)
t[i] += v;
}
ll getsum(int x)
{
ll ans = 0;
for (int i = x; i; i -= i & -i)
ans += t[i];
return ans;
}
int main()
{
freopen("exclaim.in", "r", stdin);
freopen("exclaim.out", "w", stdout);
scanf("%d", &T);
for (int cas = 1; cas <= T; cas++)
{
scanf("%d%d", &n, &mod);
ans = now = 0;
memset(t, 0, sizeof(t));
for (int i = 1; i <= n; i++)
{
int l =(1ll * i * i + 1)% mod + 1, r =(1ll * i * i + i)% mod + 1;
if (l <= r)
update(l, 1), update(r + 1, -1);
else
update(1, 1), update(r + 1, -1), update(l, 1);
int c = 1ll * i * i % mod * i % mod;
now +=(i - 1)/ mod;
ans += getsum(c + 1) + now;
}
printf("Case %d: ", cas);
cout << ans;
putchar(10);
}
}
最后的吐槽:\(exclaim\)并不是三元组的意思,是惊叫的意思……至于为什么,我也不知道……
「模拟赛20180307」三元组 exclaim 枚举+树状数组的更多相关文章
- 【洛谷】NOIP提高组模拟赛Day2【动态开节点/树状数组】【双头链表模拟】
U41571 Agent2 题目背景 炎炎夏日还没有过去,Agent们没有一个想出去外面搞事情的.每当ENLIGHTENED总部组织活动时,人人都说有空,结果到了活动日,却一个接着一个咕咕咕了.只有不 ...
- 【CSP模拟赛】奇怪的队列(树状数组 &二分&贪心)
题目描述 nodgd的粉丝太多了,每天都会有很多人排队要签名. 今天有n个人排队,每个人的身高都是一个整数,且互不相同.很不巧,nodgd今天去忙别的事情去了,就只好让这些粉丝们明天再来.同时nod ...
- 「模拟赛20180306」回忆树 memory LCA+KMP+AC自动机+树状数组
题目描述 回忆树是一棵树,树边上有小写字母. 一次回忆是这样的:你想起过往,触及心底--唔,不对,我们要说题目. 这题中我们认为回忆是这样的:给定 \(2\) 个点 \(u,v\) (\(u\) 可能 ...
- LG5200 「USACO2019JAN」Sleepy Cow Sorting 树状数组
\(\mathrm{Sleepy Cow Sorting}\) 问题描述 LG5200 题解 树状数组. 设\(c[i]\)代表\([1,i]\)中归位数. 显然最终的目的是将整个序列排序为一个上升序 ...
- UvaLive 6667 Longest Chain (分治求三元组LIS&树状数组)
题目链接: here 题意: 和hdu4742类似.差别就是一部分三元组是直接给出的.另一部分是用他给的那个函数生成的.还有就是这里的大于是严格的大于a>b必须ax>bx,ay>by ...
- LightOJ 1372 (枚举 + 树状数组)
题目 Link 输出序列中有多少个组合 {a1,a2,a3,a4,a5,a6}可以构成一个六边形. 分析 序列每个数都不相等. 所以可以设 a1<a2<a3<a4<a5< ...
- 「模拟赛20190327」 第二题 DP+决策单调性优化
题目描述 小火车虽然很穷,但是他还是得送礼物给妹子,所以他前往了二次元寻找不需要钱的礼物. 小火车准备玩玩二次元的游戏,游戏当然是在一个二维网格中展开的,网格大小是\(n\times m\)的,某些格 ...
- 「模拟赛20181025」御风剑术 博弈论+DP简单优化
题目描述 Yasuo 和Riven对一排\(n\)个假人开始练习.斩杀第\(i\)个假人会得到\(c_i\)个精粹.双方轮流出招,他们在练习中互相学习,所以他们的剑术越来越强.基于对方上一次斩杀的假人 ...
- 「模拟赛20180406」膜树 prufer编码+概率
题目描述 给定一个完全图,保证\(w_{u,v}=w_{v,u}\)且\(w_{u,u}=0\),等概率选取一个随机生成树,对于每一对\((u,v)\),求\(dis(u,v)\)的期望值对\(998 ...
随机推荐
- Java IO 简记
1.File 类: l java.io.File类:文件和目录路径名的抽象表示形式,与平台无关 l File 能新建.删除.重命名文件和目录,但 File 不能访问文件内容本身.如果需要访问文件内 ...
- [CERC 2008] Suffix reconstruction
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=4319 [算法] 首先 , 我们可以求出这个字符串的rank数组 按照SA逐位枚举 , ...
- Linux ssh 不需要输入密码的方法
采用证书的方法可以解决ssh不需要输入密码的问题. 本文采用CentOS的操作系统,创建SSH的key,并在两台或多台机器间实现信任.从而实现SSH登录不需要输入密码的功能. 首先,在一台机器上创建S ...
- SQL 常用语句收集
1.UPDATE 表名称 SET 列名称 = 新值 WHERE 列名称 = 某值 2.SELECT * FROM TableA INNER JOIN TableB ON TableA.name = T ...
- HeartBleed bug
前两年的一个严重漏洞,影响很大.出现在openssl 1.0.1和1.0.2 beta(包含1.0.1f和1.0.2beta1).利用了TLS的heartbeat. 简单的说,该漏洞被归为缓冲过度读取 ...
- JAVA 1.5 局部特性(可变参数/ANNOTATION/并发操作)
1: 可变参数 可变参数意味着可以对某类型参数进行概括,例如十个INT可以总结为一个INT数组,当然在固定长度情况下用数组是很正常的 这也意味着重点是可变,不定长度的参数 PS1:对于继承和重写我没有 ...
- 电脑当路由使用(目前只在win7上用过)
前提:电脑有无线网卡,并打开了无线 第一步使用管理员权限运行cmd.exe 1.执行如下命令 netsh wlan set hostednetwork mode=allow ssid=myWifi k ...
- js---window对象的三种窗口
============================================================================ window对象的三种窗口.html < ...
- TS学习之接口
TypeScript的核心原则之一是对值所具有的结构进行类型检查.接口的作用就是为这些类型命名和为你的代码或第三方代码定义契约. interface testType { name: string; ...
- 树莓派 Learning 002 装机后必要的操作 --- 10 实现本地电脑与远程桌面之间复制粘贴(传输)文件
树莓派 装机后必要的操作 - 实现本地电脑与远程桌面之间复制粘贴(传输)文件 我的树莓派型号:Raspberry Pi 2 Model B V1.1 装机系统:NOOBS v1.9.2 PC端系统:w ...