argparse是深度学习项目调参时常用的python标准库,使用argparse后,我们在命令行输入的参数就可以以这种形式python filename.py --lr 1e-4 --batch_size 32来完成对常见超参数的设置。,一般使用时可以归纳为以下三个步骤

使用步骤:

  • 创建ArgumentParser()对象
  • 调用add_argument()方法添加参数
  • 使用parse_args()解析参数 在接下来的内容中,我们将以实际操作来学习argparse的使用方法
import argparse

parser = argparse.ArgumentParser() # 创建一个解析对象

parser.add_argument() # 向该对象中添加你要关注的命令行参数和选项

args = parser.parse_args() # 调用parse_args()方法进行解析

常见规则

  • 在命令行中输入python demo.py -h或者python demo.py --help可以查看该python文件参数说明
  • arg字典类似python字典,比如arg字典Namespace(integers='5')可使用arg.参数名来提取这个参数
  • parser.add_argument('integers', type=str, nargs='+',help='传入的数字') nargs是用来说明传入的参数个数,'+' 表示传入至少一个参数,'*' 表示参数可设置零个或多个,'?' 表示参数可设置零个或一个
  • parser.add_argument('-n', '--name', type=str, required=True, default='', help='名') required=True表示必须参数, -n表示可以使用短选项使用该参数
  • parser.add_argument("--test_action", default='False', action='store_true')store_true 触发时为真,不触发则为假(test.py,输出为 Falsetest.py --test_action,输出为 True

使用config文件传入超参数

为了使代码更加简洁和模块化,可以将有关超参数的操作写在config.py,然后在train.py或者其他文件导入就可以。具体的config.py可以参考如下内容。

import argparse  

def get_options(parser=argparse.ArgumentParser()):  

    parser.add_argument('--workers', type=int, default=0,
help='number of data loading workers, you had better put it '
'4 times of your gpu') parser.add_argument('--batch_size', type=int, default=4, help='input batch size, default=64') parser.add_argument('--niter', type=int, default=10, help='number of epochs to train for, default=10') parser.add_argument('--lr', type=float, default=3e-5, help='select the learning rate, default=1e-3') parser.add_argument('--seed', type=int, default=118, help="random seed") parser.add_argument('--cuda', action='store_true', default=True, help='enables cuda')
parser.add_argument('--checkpoint_path',type=str,default='',
help='Path to load a previous trained model if not empty (default empty)')
parser.add_argument('--output',action='store_true',default=True,help="shows output") opt = parser.parse_args() if opt.output:
print(f'num_workers: {opt.workers}')
print(f'batch_size: {opt.batch_size}')
print(f'epochs (niters) : {opt.niter}')
print(f'learning rate : {opt.lr}')
print(f'manual_seed: {opt.seed}')
print(f'cuda enable: {opt.cuda}')
print(f'checkpoint_path: {opt.checkpoint_path}') return opt if __name__ == '__main__':
opt = get_options()
$ python config.py

num_workers: 0
batch_size: 4
epochs (niters) : 10
learning rate : 3e-05
manual_seed: 118
cuda enable: True
checkpoint_path:

随后在train.py等其他文件,我们就可以使用下面的这样的结构来调用参数。

# 导入必要库
...
import config opt = config.get_options() manual_seed = opt.seed
num_workers = opt.workers
batch_size = opt.batch_size
lr = opt.lr
niters = opt.niters
checkpoint_path = opt.checkpoint_path # 随机数的设置,保证复现结果
def set_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
random.seed(seed)
np.random.seed(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True ... if __name__ == '__main__':
set_seed(manual_seed)
for epoch in range(niters):
train(model,lr,batch_size,num_workers,checkpoint_path)
val(model,lr,batch_size,num_workers,checkpoint_path)

参考:

https://zhuanlan.zhihu.com/p/56922793

(14条消息) python argparse中action的可选参数store_true的作用_元气少女wuqh的博客-CSDN博客

[6.6 使用argparse进行调参 — 深入浅出PyTorch (datawhalechina.github.io)](https://datawhalechina.github.io/thorough-pytorch/第六章/6.6 使用argparse进行调参.html)

使用argparse进行调参的更多相关文章

  1. scikit-learn随机森林调参小结

    在Bagging与随机森林算法原理小结中,我们对随机森林(Random Forest, 以下简称RF)的原理做了总结.本文就从实践的角度对RF做一个总结.重点讲述scikit-learn中RF的调参注 ...

  2. scikit-learn 梯度提升树(GBDT)调参小结

    在梯度提升树(GBDT)原理小结中,我们对GBDT的原理做了总结,本文我们就从scikit-learn里GBDT的类库使用方法作一个总结,主要会关注调参中的一些要点. 1. scikit-learn ...

  3. word2vec参数调整 及lda调参

     一.word2vec调参   ./word2vec -train resultbig.txt -output vectors.bin -cbow 0 -size 200 -window 5 -neg ...

  4. scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)

    scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...

  5. 基于pytorch的CNN、LSTM神经网络模型调参小结

    (Demo) 这是最近两个月来的一个小总结,实现的demo已经上传github,里面包含了CNN.LSTM.BiLSTM.GRU以及CNN与LSTM.BiLSTM的结合还有多层多通道CNN.LSTM. ...

  6. 漫谈PID——实现与调参

    闲话: 作为一个控制专业的学生,说起PID,真是让我又爱又恨.甚至有时候会觉得我可能这辈子都学不会pid了,但是经过一段时间的反复琢磨,pid也不是很复杂.所以在看懂pid的基础上,写下这篇文章,方便 ...

  7. hyperopt自动调参

    hyperopt自动调参 在传统机器学习和深度学习领域经常需要调参,调参有些是通过通过对数据和算法的理解进行的,这当然是上上策,但还有相当一部分属于"黑盒" hyperopt可以帮 ...

  8. 调参必备---GridSearch网格搜索

    什么是Grid Search 网格搜索? Grid Search:一种调参手段:穷举搜索:在所有候选的参数选择中,通过循环遍历,尝试每一种可能性,表现最好的参数就是最终的结果.其原理就像是在数组里找最 ...

  9. random froest 调参

    https://blog.csdn.net/wf592523813/article/details/86382037 https://blog.csdn.net/xiayto/article/deta ...

随机推荐

  1. 《深入理解ES6》笔记——块级作用域绑定(1)

    本章涉及3个知识点,var.let.const,现在让我们了解3个关键字的特性和使用方法. var JavaScript中,我们通常说的作用域是函数作用域,使用var声明的变量,无论是在代码的哪个地方 ...

  2. H5 视频播放解决方案

    前两天,美团推出的杨洋H5火爆朋友圈.里面主要的是多段视频播放.暂停.听起来很简单,但是由于腾讯白名单限制,在微信浏览器,qq浏览器,会自动将video标签中非腾讯域名的视频 ,自动全屏,结尾追加视频 ...

  3. 前端基础之CSS(1)

    1.css3的新特性有哪些 (1)CSS3选择器(基本.属性.伪类具体见下) (2)CSS3边框与圆角 圆角border-radius 属性:border-top-left-radius 左上角 bo ...

  4. 【Android开发】【布局】各种TabLayout样式

    Demo

  5. uniapp中websokcet封装和使用

    1.  websocket.js   封装代码 //是否已经连接上ws let isOpenSocket = false //心跳间隔,单位毫秒 let heartBeatDelay = 3000 l ...

  6. Mybatis 实现批量插入和批量删除源码实例

    Mybatis 实现批量插入数据和批量删除数据 学习内容: 准备工作 1.数据库新建表 2.新建 Maven 项目和设置编译版本及添加依赖 3.新建 db.properties 4.新建 mybati ...

  7. EMS邮箱数据库常用命令(一)

    案例任务:创建名为"book"的邮箱数据库,数据库文件和日志文件存储位置为"c:\book". 键入以下命令. New-MailboxDatabase -Nam ...

  8. js,nodejs如何判断文件是什么编码格式

    nodejs编码只支持utf8的编码方式,无论是打开某个文件或者写.js脚本都得以utf8的编码方式保存,不然程序无法运行,读出来的文件是乱码. 如果是在前台,读取文件是通过FileReader或者F ...

  9. SpringMVC-注解@RequestParam

    当请求的参数名称与Controller的业务方法不一致时,就需要通过@RequestParam注解进行显示的绑定 1.value:映射参数 @RequestMapping("/report1 ...

  10. SpringMVC快速使用——基于注解

    SpringMVC快速使用--基于注解 1.引入依赖 <!-- 定义Spring版本 --> <properties> <spring.verson>5.3.8&l ...