一、递推关系——酵母菌生长模型

代码:

import matplotlib.pyplot as plt
time = [i for i in range(0,19)]
number = [9.6,18.3,29,47.2,71.1,119.1,174.6,257.3,
350.7,441.0,513.3,559.7,594.8,629.4,640.8,
651.1,655.9,659.6,661.8]#19个数据 与i相对应
plt.title('Relationship between time and number')#创建标题
plt.xlabel('time')#X轴标签
plt.ylabel('number')#Y轴标签
plt.plot(time,number)#画图
plt.show()#显示

分析:

酵母菌数量增长有一个这样的规律:当某些资源只能支撑某个最大限度的种群 数量,而不能支持种群数量的无限增长,当接近这个最大值时,种群数量的增 长速度就会慢下来。

  • 两个观测点的值差△p来表征增长速度
  • △p与目前的种群数量有关,数量越大,增长速度越快
  • △p还与剩余的未分配的资源量有关,资源越多,增长速度越快
  • 然后以极限总群数量与现有种群数量的差值表征剩余资源量

 

认为delta_p为二次函数时

代码:

import numpy as np
import matplotlib.pylab as plt
p_n = [9.6,18.3,29,47.2, 71.1,119.1, 174.6,
257.3, 350.7, 441.0, 513.3, 559.7, 594.8, 629.4,
640.8, 651.1, 655.9, 659.6]
delta_p = [8.7, 10.7,18.2,23.9, 48,55.5,
82.7, 93.4, 90.3, 72.3, 46.4,35.1,
34.6, 11.4, 10.3,4.8,3.7,2.2]
plt.plot(p_n,delta_p) poly = np.polyfit(p_n, delta_p, 2)
z = np.polyval(poly,p_n)
print(poly) plt.plot(p_n, z)
plt.show()

[-8.01975671e-04  5.16054679e-01  6.41123361e+00]

b :把k(665-pn)看成一个整体

代码:

import numpy as np
import matplotlib.pylab as plt
p_n = [9.6,18.3,29,47.2, 71.1,119.1, 174.6,
257.3, 350.7, 441.0, 513.3, 559.7, 594.8, 629.4,
640.8, 651.1, 655.9, 659.6]
delta_p = [8.7, 10.7,18.2,23.9, 48,55.5,
82.7, 93.4, 90.3, 72.3, 46.4,35.1,
34.6, 11.4, 10.3,4.8,3.7,2.2] p_n = np.array(p_n)
x= (665 - p_n) * p_n
plt.plot(x,delta_p) ploy = np.polyfit(x,delta_p,1)
print(ploy)
z = np.polyval(ploy,x) plt.plot(x,z)
plt.show()

[ 0.00081448 -0.30791574]

模型 : 

为什么没有后面的b?  一开始酵母菌需要有一定的数量

预测曲线:

import matplotlib.pyplot as plt
p0 = 9.6
p_list = []
for i in range(20):
p_list.append(p0)
p0 = 0.00081448*(665-p0)*p0+p0
plt.plot(p_list)
plt.show()

预测与实际曲线

import matplotlib.pyplot as plt
number = [9.6,18.3,29,47.2,71.1,119.1,174.6,257.3,
350.7,441.0,513.3,559.7,594.8,629.4,640.8,
651.1,655.9,659.6,661.8]
time = [i for i in range(0,19)]
p0 = 9.6
p_list = []
for i in range(20):
p_list.append(p0)
p0 = 0.00081448*(665-p0)*p0+p0
plt.plot(p_list)
plt.scatter(time,number,s=100,alpha=1.0,marker='o')
plt.show()

二、显式差分——热传导方程

其中,k为热传导系数,第2式是方程的初值条件,第3、4式是边值条件,热传导方程如下:

绘制初值条件函数图像(第二个式子)​

from matplotlib import pylab
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl mpl.rcParams['font.sans-serif'] = ['Microsoft YaHei'] # 指定默认字体
mpl.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题 def initialCondition(x):
return 4.0 * (1.0 - x) * x xArray = np.linspace(0, 1.0, 50)
yArray = np.array(list(map(initialCondition, xArray)))
pylab.figure(figsize=(12, 6))
pylab.xlabel('$x$', fontsize=15)
pylab.ylabel('$f(x)$', fontsize=15)
pylab.title(u'一维热传导方程初值条件')
pylab.plot(xArray, yArray)
plt.show()


三、马尔科夫链

构建差分方程组

代码:

import matplotlib.pyplot as plt
RLIST = [0.33333]
DLIST = [0.33333]
ILIST = [0.33333]
for i in range(40):
R = RLIST[i]*0.75+DLIST[i]*0.20+ILIST[i]*0.40
RLIST.append(R)
D = RLIST[i]*0.05+DLIST[i]*0.60+ILIST[i]*0.20
DLIST.append(D)
I = RLIST[i]*0.20+DLIST[i]*0.20+ILIST[i]*0.40
ILIST.append(I)
plt.plot(RLIST)
plt.plot(DLIST)
plt.plot(ILIST)
plt.xlabel('Time')
plt.ylabel('Voting percent')
plt.annotate('DemocraticParty',xy = (5,0.2))
plt.annotate('RepublicanParty',xy = (5,0.5))
plt.annotate('IndependentCandidate',xy = (5,0.25))
plt.show()
print(RLIST,DLIST,ILIST)


基于python的数学建模---差分方程的更多相关文章

  1. 使用Python scipy linprog 线性规划求最大值或最小值(使用Python学习数学建模笔记)

    函数格式 scipy.optimize.linprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None, method='simp ...

  2. Python数学建模-01.新手必读

    Python 完全可以满足数学建模的需要. Python 是数学建模的最佳选择之一,而且在其它工作中也无所不能. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数学 ...

  3. Python数学建模-02.数据导入

    数据导入是所有数模编程的第一步,比你想象的更重要. 先要学会一种未必最佳,但是通用.安全.简单.好学的方法. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数据导入 ...

  4. Python小白的数学建模课-A1.国赛赛题类型分析

    分析赛题类型,才能有的放矢. 评论区留下邮箱地址,送你国奖论文分析 『Python小白的数学建模课 @ Youcans』 带你从数模小白成为国赛达人. 1. 数模竞赛国赛 A题类型分析 年份 题目 要 ...

  5. Python小白的数学建模课-A3.12 个新冠疫情数模竞赛赛题与点评

    新冠疫情深刻和全面地影响着社会和生活,已经成为数学建模竞赛的背景帝. 本文收集了与新冠疫情相关的的数学建模竞赛赛题,供大家参考,欢迎收藏关注. 『Python小白的数学建模课 @ Youcans』带你 ...

  6. Python小白的数学建模课-07 选址问题

    选址问题是要选择设施位置使目标达到最优,是数模竞赛中的常见题型. 小白不一定要掌握所有的选址问题,但要能判断是哪一类问题,用哪个模型. 进一步学习 PuLP工具包中处理复杂问题的字典格式快捷建模方法. ...

  7. Python小白的数学建模课-09 微分方程模型

    小白往往听到微分方程就觉得害怕,其实数学建模中的微分方程模型不仅没那么复杂,而且很容易写出高水平的数模论文. 本文介绍微分方程模型的建模与求解,通过常微分方程.常微分方程组.高阶常微分方程 3个案例手 ...

  8. Python小白的数学建模课-B5. 新冠疫情 SEIR模型

    传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. 考虑存在易感者.暴露者.患病者和康复者四类人群,适用于具有潜伏期.治愈后获得终身免疫的传染病. 本 ...

  9. Python小白的数学建模课-B6. 新冠疫情 SEIR 改进模型

    传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. SEIR 模型考虑存在易感者.暴露者.患病者和康复者四类人群,适用于具有潜伏期.治愈后获得终身免疫 ...

  10. Python小白的数学建模课-B4. 新冠疫情 SIR模型

    Python小白的数学建模课-B4. 新冠疫情 SIR模型 传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. SIR 模型将人群分为易感者(S类). ...

随机推荐

  1. 微软出品自动化神器Playwright,不用写一行代码(Playwright+Java)系列(一) 之 环境搭建及脚本录制

    一.前言 半年前,偶然在视频号刷到某机构正在直播讲解Playwright框架的使用,就看了一会,感觉还不错,便被种草,就想着自己有时间也可以自己学一下,这一想着就半年多过去了. 读到这,你可能就去百度 ...

  2. logstash接受checkpoint防火墙日志并用ruby分词

    直接上logstahs配置文件 input{ syslog{ type => "syslog" port => 514 } } filter { grok { matc ...

  3. Ansible_基础模块

    特点:无主从,即装即用,基于ssh 安装ansible yum install epel-release -y yum install ansible -y 定义主机清单 vim /etc/ansib ...

  4. 【面试题】JS使用parseInt()、正则截取字符串中数字

    JS使用parseInt()和正则截取字符串中数字 点击打开视频讲解更加详细 parseInt() 函数 定义和用法 parseInt() 函数可解析一个字符串,并返回一个整数. 当参数 radix ...

  5. RedHat Linux升级内核

    操作系统:Red Hat 6.4 内核文件:linux-3.10.1.tar.gz  https://www.cnblogs.com/cherish-sweet/p/newyum.html uname ...

  6. Reactor And Gev 详解 通俗易懂

    reactor 详解 在类似网关这种海量连接, 很高的并发的场景, 比如有 10W+ 连接, go 开始变得吃力. 因为频繁的 goroutine 调度和 gc 导致程序性能很差. 这个时候我们可以考 ...

  7. 前端实现docx、pdf格式文件在线预览

    theme: vuepress highlight: atelier-heath-light 介绍 在业务中,如果遇到文档管理类的功能,会出现需要在线预览的业务需求,本文主要是通过第三方库来实现文档预 ...

  8. 学习完nio的一个小笔记吧

    这是一个nio网络通信服务端的demo,主要就学习了selector的一些用法,以及它里面的事件类型 selector是对nio的一个优化,它能保证既能高效处理线程中的事件,又能保证线程不会一直占用c ...

  9. Deployment故障排除图解

    PDF文件下载地址:https://files.cnblogs.com/files/sanduzxcvbnm/troubleshooting-kubernetes.pdf

  10. Request Body Search

    官方文档地址:https://www.elastic.co/guide/en/elasticsearch/reference/master/modules-scripting-using.html