作为NLP领域的著名框架,Huggingface(HF)为社区提供了众多好用的预训练模型和数据集。本文介绍了如何在矩池云使用Huggingface快速加载预训练模型和数据集。

1.环境

HF支持Pytorch,TensorFlow和Flax。您可以根据HF官方文档安装对应版本,也可以使用矩池云HuggingFace镜像(基于Pytorch),快速启动。

矩池云租用机器入门手册

如果使用其他镜像,你需要手动安装 transformers 和 datasets 两个包:

pip install transformers datasets

HF具体使用方式和代码请参考官方https://github.com/huggingface/transformers

2.预训练模型

2.1 预训练模型简介

HF里有非常多的预训练模型,支持不同软件版本,可用于Pipeline和模型微调。你可以选择从HF官方Model Hub下载预训练模型(可能耗时较长),另外矩池云提供了部分常用的预训练模型。访问路径:/public/model/nlp/

预训练模型名称(定时更新,也可以联系矩池云小助手补充):

模型名称
albert-base-v2
albert-xxlarge-v2
bert-base-cased
bert-base-chinese
bert-base-uncased
bert-large-uncased
xlm-roberta-base
chinese-bert-wwm-ext
chinese-electra-180g-base-discriminator
chinese-roberta-wwm-ext
clip-vit-base-patch32
code_trans_t5_small_program_synthese_transfer_learning_finetune
deberta-v3-base
deberta-v3-large
distilbart-cnn-12-6
distilbert-base-uncased-finetuned-sst-2-english
distilgpt2
gpt2-chinese-cluecorpussmall
gpt2
roberta-base
t5-base
xlm-roberta-base

2.2 预训练模型使用方法

首先需要将自己需要使用的预训练模型zip文件解压到矩池云网盘或者机器中其他目录(存到网盘后下次可以直接使用),使用模型时填入本地存储路径即可调用。

以使用albert-base-v2模型为例子:

  • 解压
unzip /public/model/nlp/albert-base-v2.zip -d /mnt/
  • 代码中使用

如果环境中没有transformers包,可以先pip install transformers安装。

from transformers import AutoModel

model = AutoModel.from_pretrained('/mnt/albert-base-v2')
# 注意 /mnt/albert-base-v2 是你解压后模型文件所在路径

3.数据集

3.1 数据集简介

数据集存放路径:/public/data/nlp

数据集名称(定时更新,也可联系矩池云小助手):

名称 描述
dbpedia_14 基于DBpedia2014的14个不重叠的分类数据集,包含40,000训练样本和5,000测试样本。源自维基百科的语义词条
glue 通用语言理解评估基准,面向9项任务的数据集,参考gluebenchmark
newsgroup 用于文本分类、文本挖据和信息检索研究的国际标准数据集之一。数据集收集了大约20,000左右的新闻组文档,均匀分为20个不同主题的新闻组集合
squad 斯坦福问答数据集,一个阅读理解数据集
super_glue 更新版的Glue数据集
wikitext 英语词库数据是由Salesforce MetaMind 策划的包含1亿个词汇的大型语言建模语料库。这些词汇都是从维基百科一些经典文章中提取得到
yahooAnswers 数据集源于 Yahoo!Answers Comprehensive Questions and Answers 1.0 的 10 个主要分类数据,每个类别分别包含 140000 个训练样本和 5000 个测试样本
yelp_review_full 这个数据集是Yelp业务、评论和用户数据的一个子集。包含大量的评论、业务、用户、提示和签到数据

3.2 数据集使用方法

首先需要将自己需要使用的数据集zip文件解压到矩池云网盘或者机器中其他目录(存到网盘后下次可以直接使用),使用数据集时在代码抬头添加代码from datasets import load_from_disk,并将代码中加载数据集函数load_dataset更改为load_from_disk(数据集存放路径)即可。部分数据集需指定Subset。

以使用dbpedia_14数据集为例子:

  • 解压,将数据集解压到网盘中(确保网盘空间足够)
unzip /public/data/nlp/dbpedia_14.zip -d /mnt/
  • 代码中使用

如果环境中没有datasets包,可以先pip install datasets安装。

from datasets import load_from_disk

data = load_from_disk('/mnt/dbpedia_14')
# 注意 /mnt/dbpedia_14 是你解压后数据集文件所在路径

使用Huggingface在矩池云快速加载预训练模型和数据集的更多相关文章

  1. [Pytorch]Pytorch加载预训练模型(转)

    转自:https://blog.csdn.net/Vivianyzw/article/details/81061765 东风的地方 1. 直接加载预训练模型 在训练的时候可能需要中断一下,然后继续训练 ...

  2. pytorch中修改后的模型如何加载预训练模型

    问题描述 简单来说,比如你要加载一个vgg16模型,但是你自己需要的网络结构并不是原本的vgg16网络,可能你删掉某些层,可能你改掉某些层,这时你去加载预训练模型,就会报错,错误原因就是你的模型和原本 ...

  3. pytorch加载预训练模型参数的方式

    1.直接使用默认程序里的下载方式,往往比较慢: 2.通过修改源代码,使得模型加载已经下载好的参数,修改地方如下: 通过查找自己代码里所调用网络的类,使用pycharm自带的函数查找功能(ctrl+鼠标 ...

  4. Tensorflow加载预训练模型和保存模型(ckpt文件)以及迁移学习finetuning

    转载自:https://blog.csdn.net/huachao1001/article/details/78501928 使用tensorflow过程中,训练结束后我们需要用到模型文件.有时候,我 ...

  5. Tensorflow加载预训练模型和保存模型

    转载自:https://blog.csdn.net/huachao1001/article/details/78501928 使用tensorflow过程中,训练结束后我们需要用到模型文件.有时候,我 ...

  6. 在矩池云使用Disco Diffusion生成AI艺术图

    在 Disco Diffusion 官方说明的第一段,其对自身是这样定义: AI Image generating technique called CLIP-Guided Diffusion.DD ...

  7. 矩池云上cifar10使用说明

    矩池云将 keras 预训练模型保存目录为 /public/keras_pretrained_model/ 使用方法: 先执行命令,创建目录 mkdir -p ~/.keras/models/ 然后将 ...

  8. 如何使用 PuTTY 远程连接矩池云主机

    PuTTY 是一款开源的连接软件,用来远程连接服务器,支持 SSH.Telnet.Serial 等协议. 矩池云的主机支持 SSH 登录,以下为使用 PuTTY 连接矩池云 GPU 的使用教程. 如您 ...

  9. 矩池云 | 高性价比的GPU租用深度学习平台

    矩池云是一个专业的国内深度学习云平台,拥有着良好的深度学习云端训练体验.在性价比上,我们以 2080Ti 单卡为例,36 小时折扣后的价格才 55 元,每小时单价仅 1.52 元,属于全网最低价.用户 ...

随机推荐

  1. 北航内核操作系统-lab0

    1.lab0环境介绍. 2.进入实验界面. 3.进入实战测试. 任务要求: 3.1编写斐波那契数列. 3.2编写Makefile脚本. Makefile介绍: make命令执行时,需要一个 Makef ...

  2. 基于dhtmlxGantt的Blazor甘特图组件

    基于dhtmlxGantt实现的甘特图组件,目前仅做到了数据展现,方法及插槽暂未实现,若需可按照dhtmlxGantt的文档及微软的Balzor文档,自行扩展. 数据发生变化后甘特图会立即发生变化. ...

  3. 英语资源及其APP推荐

    step1:记单词 a,说到背单词常规方法是拿着一本单词书一个一个往下背.该种方法不仅枯燥且效率极低. b,app辅助记忆.在此就我用过的两个app做简述.第一个是百词斩 百词斩:功能主打图片记忆,并 ...

  4. docker安装nginx,配置SSL

    nginx安装 下载镜像并测试 1.docker pull nginx 2.docker images nginx 查看我们拉取到本地的nginx镜像IMAGE ID 3.首先测试下nginx镜像是否 ...

  5. 聊聊OOP中的设计原则以及访问者模式

    一  设计原则 (SOLID) 1.  S - 单一职责原则(Single Responsibllity Principle) 1.1  定义 一个类或者模块只负责完成一个职责(或功能), 认为&qu ...

  6. vue跑马灯vue3-marquee

    安装vue3-marquee 如果您使用的是 npm: npm install vue3-marquee@latest --save 如果您使用的是yarn: yarn add vue3-marque ...

  7. .NET性能优化-推荐使用Collections.Pooled(补充)

    简介 在上一篇.NET性能优化-推荐使用Collections.Pooled一文中,提到了使用Pooled类型的各种好处,但是在群里也有小伙伴讨论了很多,提出了很多使用上的疑问. 所以特此写了这篇文章 ...

  8. Win10 pycharm中显示PyTorch tensorboard图

    import numpy import numpy as np import torch import matplotlib.pyplot as plt import torch.nn as nn i ...

  9. JavaScript String -> Number

    五种将String类型转化为Number类型的方法:   方法一:使用一元运算符:eg:字符串'5' +'5' -> 5;  5+null -> 5(null转化为0);  '5'+nul ...

  10. camunda如何调用HTTP REST(Service Task)服务节点

    ​ Camunda中的Service Task(服务任务)用于调用服务.在Camunda中,可以通过调用本地Java代码.外部工作项.web服务形式实现的逻辑来完成的. 本文重点描述如何使用web服务 ...