PID控制_位置式
位置式: 
1. 位置式:
pid.c:
float PID_calculate( float dT_s, //周期(单位:秒)
float in_ff, //前馈值
float expect, //期望值(设定值)
float feedback, //反馈值()
_PID_arg_st *pid_arg, //PID参数结构体
_PID_val_st *pid_val, //PID数据结构体
float inte_d_lim,//积分误差限幅
float inte_lim, //integration limit,积分限幅
float err_lim //误差死区
)
{
float hz;
hz = safe_div(1.0f,dT_s,0);
pid_val->err = (expect - feedback);
if( ( pid_val->err <= err_lim) && ( pid_val->err > 0 ) ) //误差死区
{
pid_val->err = 0;
}
else if( ( pid_val->err >= -err_lim) && ( pid_val->err < 0 ) )
{
pid_val->err = 0;
}
pid_val->exp_d = (expect - pid_val->exp_old) *hz;
if(pid_arg->fb_d_mode == 0)
{
pid_val->fb_d = (feedback - pid_val->feedback_old) *hz;
}
else
{
pid_val->fb_d = pid_val->fb_d_ex;
}
pid_val->differential = (pid_arg->kd_ex *pid_val->exp_d - pid_arg->kd_fb *pid_val->fb_d);
pid_val->err_i += pid_arg->ki *LIMIT((pid_val->err ),-inte_d_lim,inte_d_lim )*dT_s;//)
pid_val->err_i = LIMIT(pid_val->err_i,-inte_lim,inte_lim);
pid_val->out = pid_arg->k_ff *in_ff
+ pid_arg->kp *pid_val->err
+ pid_val->differential
+ pid_val->err_i;
pid_val->feedback_old = feedback;
pid_val->exp_old = expect;
return (pid_val->out);
}
pid.h:
#define LIMIT( x,min,max ) ( ((x) <= (min)) ? (min) : ( ((x) > (max))? (max) : (x) ) )
typedef struct
{
int exp;
int fb;
int error;
int out;
} _ctrl_st;
typedef struct
{
uint8_t fb_d_mode;
float kp; //比例系数
float ki; //积分系数
float kd_ex; //微分系数
float kd_fb; //previous_d 微分先行
// float inc_hz; //不完全微分低通系数
// float k_inc_d_norm; //Incomplete 不完全微分 归一(0,1)
float k_ff; //前馈
}_PID_arg_st;
typedef struct
{
float err;
float exp_old;
float feedback_old;
float fb_d;
float fb_d_ex;
float exp_d;
// float err_d_lpf;
float err_i;
float ff;
float pre_d;
float out;
float differential;
}_PID_val_st;
typedef struct
{
_ctrl_st *ctrl_st;
_PID_arg_st *arg_st;
_PID_val_st *val_st;
}_PID_DATA;
float PID_calculate( float T, //周期
float in_ff, //前馈
float expect, //期望值(设定值)
float feedback, //反馈值
_PID_arg_st *pid_arg, //PID参数结构体
_PID_val_st *pid_val, //PID数据结构体
float inte_d_lim,
float inte_lim, //integration limit,积分限幅
float err_lim //误差死区
); //输出
使用:
static _PID_arg_st arg_st;//实例化
static _PID_val_st val_st;//实例化
static _ctrl_st ctrl_st;//实例化
arg_st->kp = 1.2f;
arg_st->ki = 3.2f;
arg_st->kd_fb = 0.05f;
PID控制_位置式的更多相关文章
- 位置式PID与增量式PID算法
位置式PID与增量式PID算法 PID控制是一个二阶线性控制器 定义:通过调整比例.积分和微分三项参数,使得大多数的工业控制系统获得良好的闭环控制性能. 优点 ...
- PID控制
PID解释: 位置式: 可以看出,比例部分只与当前的偏差有关,而积分部分则是系统过去所有偏差的累积.位置式PI调节器的结构清晰,P和I两部分作用分明,参数调整简单明了.但直观上看,要计算第拍 ...
- 数字式PID控制的应用总结
PID控制是一个二阶线性闭环控制器,通过调整比例.积分和微分三项参数,使得大多数的工业控制系统获得良好的闭环控制性能.PID控制优点:a. 技术成熟,b. 易被人们熟悉和掌握,c. 不需要建立数学模型 ...
- 经典PID控制及应用体会总结
经典PID控制及应用体会总结 PID控制原理 PID是一种线性控制器,它根据给定值rin(t)与实际输出值yout(t)构成控制方案: 重点关注相关算法是如何对偏差进行处理的: PID控制器各校正环节 ...
- 四轴飞行器飞行原理与双闭环PID控制
四轴轴飞行器是微型飞行器的其中一种,相对于固定翼飞行器,它的方向控制灵活.抗干扰能力强.飞行稳定,能够携带一定的负载和有悬停功能,因此能够很好地进行空中拍摄.监视.侦查等功能,在军事和民用上具备广泛的 ...
- 【转】位置式、增量式PID算法C语言实现
位置式.增量式PID算法C语言实现 芯片:STM32F107VC 编译器:KEIL4 作者:SY 日期:2017-9-21 15:29:19 概述 PID 算法是一种工控领域常见的控制算法,用于闭环反 ...
- 增量式pid和位置式PID参数整定过程对比
//增量式PID float IncPIDCalc(PID_Typedef* PIDx,float SetValue,float MeaValue)//err»ý·Ö·ÖÀë³£Êý { PIDx-& ...
- 位置式PID与增量式PID
//位置式PID float Kp; float Ki; float Kd; float eSum,e0,e1; float pid_control(float now,float target) { ...
- 位置式PID讲解
table { margin: auto } 一.公式拆解 \(PID\)公式展示: \[u(t)=K_p(e(t)+\frac{1}{T_t } ∫_0^te(t)dt+T_D \frac {de( ...
- SLAM+语音机器人DIY系列:(四)差分底盘设计——5.底盘PID控制参数整定
摘要 运动底盘是移动机器人的重要组成部分,不像激光雷达.IMU.麦克风.音响.摄像头这些通用部件可以直接买到,很难买到通用的底盘.一方面是因为底盘的尺寸结构和参数是要与具体机器人匹配的:另一方面是因为 ...
随机推荐
- layui的switch监听事件无用
像layui的这种表单事件是属于表单,而不是表格,所以操作是layui.form.on监听事件,而不是用layui.table.on table = layui.table , form = layu ...
- ubuntu 20.04 / 22.04 运行32位程序
sudo dpkg --add-architecture i386 sudo apt install libc6:i386 libstdc++6:i386 sudo apt-get update su ...
- SSH(二)框架配置文件
在引入了宽假所需要的jar包后,引入相应配置文件. 一.Struts2的配置文件: 1.Struts2的黑心过滤器,在web.xml中引入: <!-- struts2框架的核心过滤器 clas ...
- SpringCloud Alibaba(七) - JWT(JSON Web Token)
原文链接: JWT详解:https://blog.csdn.net/weixin_45070175/article/details/118559272 1.什么是JWT 通俗地说,JWT的本质就是一个 ...
- java逻辑运算&&与&的区别
本文主要阐述&&(短路与)和&(逻辑与)的运算异同:a && b 和 a&b : 共同之处是只有a和b同时为真时,结果才为真,否则为假 不同点在于 a ...
- redis(二)
Redis简单使用 一. Redis的安装 Redis作为一款目前这个星球上性能最高的非关系型数据库之一. 拥有每秒近十万次的读写能力. 其实力只能用恐怖来形容. mac版本, brew: https ...
- JavaWeb项目编译前后的目录结构
JavaWeb项目编译前后的目录结构 编译前 页面和视图都放在webapp目录下 编译后 webapps WEB-INF
- [OpenCV实战]35 使用Tesseract和OpenCV实现文本识别
目录 1 如何在Ubuntu和windows上安装Tesseract 1.1 在ubuntu18.04上安装Tesseract4 1.2 在Ubuntu 14.04,16.04,17.04,17.10 ...
- 既然有MySQL了,为什么还要有MongoDB?
大家好,我是哪吒,最近项目在使用MongoDB作为图片和文档的存储数据库,为啥不直接存MySQL里,还要搭个MongoDB集群,麻不麻烦? 让我们一起,一探究竟,了解一下MongoDB的特点和基本用法 ...
- scratch图形化编程教程
1. scratch软件 市面上类似于scratch这种图形化编程的软件非常多,各个品牌的都有,而且每个品牌之后的风格.界面布局也是不同的,所以我会简单的列举一些对应软件. scratch3.0 优点 ...