[CF1519D] Maximum Sum of Products (暴力)
题面
有两个长为
n
n
n 的序列
a
a
a 和
b
b
b,至多反转
a
a
a 的一个子区间,最大化
∑
i
=
1
n
a
i
⋅
b
i
\sum_{i=1}^na_i\cdot b_i
∑i=1nai⋅bi 并输出这个值。
1
≤
n
≤
5000
1\leq n\leq5000
1≤n≤5000,答案不会爆 long long
。
题解
绝大部分人都在考场上用的是官方题解的做法,基本没有什么别的做法了,如果有,那估计就是提交榜单最末尾那些
1900+ ms
的做法吧。
数据非常小,再加上又是Div2
,让人不禁想起暴力做法。朴素的暴力是枚举要翻转的区间
[
l
,
r
]
[l,r]
[l,r] ,然后把它带给答案的变化量加上,取最优输出。
这样是
O
(
n
3
)
O(n^3)
O(n3) 的,过不了。为什么这个暴力不可行,因为我们每次计算区间
[
l
,
r
]
[l,r]
[l,r] ,都要把整个
[
l
,
r
]
[l,r]
[l,r] 模拟翻转一遍在计算答案,这是低效的。
只要我们注意到
[
l
,
r
]
[l,r]
[l,r] 的答案可以从
[
l
+
1
,
r
−
1
]
[l+1,r-1]
[l+1,r−1] 的答案
O
(
1
)
O(1)
O(1) 转移过来,我们就解决这个问题了。这很好理解,因为这两个区间的旋转中心相等,它们的模拟翻转过程只有最边上不同。
你可以暴力从每个旋转中心往外扩展计算,也可以用 Dynamic Programming
仿照上面说的转移写。都是
O
(
n
2
)
O(n^2)
O(n2) 的,差别不大。
CODE
#include<set>
#include<queue>
#include<cmath>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define MAXN 5005
#define ENDL putchar('\n')
#define LL long long
#define DB double
#define lowbit(x) ((-x) & (x))
LL read() {
LL f = 1,x = 0;char s = getchar();
while(s < '0' || s > '9') {if(s=='-')f = -f;s = getchar();}
while(s >= '0' && s <= '9') {x=x*10+(s-'0');s = getchar();}
return f * x;
}
int n,m,i,j,s,o,k;
LL a[MAXN],b[MAXN];
int main() {
n = read();
LL sum = 0;
for(int i = 1;i <= n;i ++) a[i] = read();
for(int i = 1;i <= n;i ++) {
b[i] = read(); sum += a[i] * b[i];
}
LL ans = sum;
for(int i = 1;i <= n;i ++) {// 从中心扩展
LL sm = sum;
for(int j = i-1,k = i+1;j > 0 && k <= n;j --,k ++) { // 长度为奇数,中心是个点
sm -= a[j]*b[j] + a[k]*b[k];
sm += a[j]*b[k] + a[k]*b[j];
ans = max(ans,sm);
}
sm = sum;
for(int j = i,k = i+1;j > 0 && k <= n;j --,k ++) { // 长度为偶数,中心是个分界线
sm -= a[j]*b[j] + a[k]*b[k];
sm += a[j]*b[k] + a[k]*b[j];
ans = max(ans,sm);
}
}
printf("%lld\n",ans);
return 0;
}
[CF1519D] Maximum Sum of Products (暴力)的更多相关文章
- [LeetCode] Maximum Sum of 3 Non-Overlapping Subarrays 三个非重叠子数组的最大和
In a given array nums of positive integers, find three non-overlapping subarrays with maximum sum. E ...
- 689. Maximum Sum of 3 Non-Overlapping Subarrays三个不重合数组的求和最大值
[抄题]: In a given array nums of positive integers, find three non-overlapping subarrays with maximum ...
- 【leetcode】1031. Maximum Sum of Two Non-Overlapping Subarrays
题目如下: Given an array A of non-negative integers, return the maximum sum of elements in two non-overl ...
- POJ2479 Maximum sum[DP|最大子段和]
Maximum sum Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 39599 Accepted: 12370 Des ...
- ural 1146. Maximum Sum
1146. Maximum Sum Time limit: 0.5 secondMemory limit: 64 MB Given a 2-dimensional array of positive ...
- UVa 108 - Maximum Sum(最大连续子序列)
题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...
- 最大子矩阵和 URAL 1146 Maximum Sum
题目传送门 /* 最大子矩阵和:把二维降到一维,即把列压缩:然后看是否满足最大连续子序列: 好像之前做过,没印象了,看来做过的题目要经常看看:) */ #include <cstdio> ...
- URAL 1146 Maximum Sum(最大子矩阵的和 DP)
Maximum Sum 大意:给你一个n*n的矩阵,求最大的子矩阵的和是多少. 思路:最開始我想的是预处理矩阵,遍历子矩阵的端点,发现复杂度是O(n^4).就不知道该怎么办了.问了一下,是压缩矩阵,转 ...
- ural 1146. Maximum Sum(动态规划)
1146. Maximum Sum Time limit: 1.0 second Memory limit: 64 MB Given a 2-dimensional array of positive ...
随机推荐
- Python中plt.plot()、plt.scatter()和plt.legend函数的用法示例
参考:http://www.cppcns.com/jiaoben/python/471948.html https://blog.csdn.net/weixin_44825185/article/de ...
- Nginx安装及支持https代理配置和禁用TSLv1.0、TSLv1.1配置
Linux安装Nginx Nginx安装及支持https代理配置和禁用TSLv1.0.TSLv1.1配置. 下载安装包 [root@localhost ~]# wget http://nginx.or ...
- 机械硬盘和ssd固态硬盘的原理对比分析
固态硬盘和机械硬盘的区别 机械硬盘 磁头是不是直接和盘片接触的呢 磁盘中有几个盘片 机械硬盘的工作原理 固态硬盘的寻址方式 SMR叠瓦式真的比PMR优秀吗 固态硬盘 主控芯片 闪存颗粒 缓存单元 固态 ...
- JQuery实现图片轮播无缝滚动
图片轮播无缝滚动实例 实现效果展示预览: 思路: 1.设置当前索引curIndex,和前一张索引prevIndex.(curIndex为下一次要显示的图片索引,prevIndex为现在看见的图片) 2 ...
- java请求登录接口代码示例
前言 近期研究如何利用java代码如何获取其他系统中所需的数据,自己总结的方法如下: 1.工具类代码 /** * <pre> * 方法体说明:向远程接口发起请求,返回字符串类型结果 * @ ...
- Java中将对象或者集合对象转换成json字符串
1.对象和字符串相互转换 2.集合对象和字符串相互转换
- 零基础学Java(4)字符串
字符串 从概念上讲,Java字符串就是Unicode字符序列.例如,字符串"Java\u2122"由5个Unicode字符J.a.v.a和组成.Java没有内置的字符串类型,而是在 ...
- GRAPH CONVOLUTIONAL NETWORK WITH SEQUENTIAL ATTENTION FOR GOAL-ORIENTED DIALOGUE SYSTEMS
面向领域特定目标的对话系统通常需要建模三种类型的输入,即(i)与领域相关的知识库,(ii)对话的历史(即话语序列)和(iii)需要生成响应的当前话语. 在对这些输入进行建模时,当前最先进的模型(如Me ...
- DNS 系列(二):DNS 记录及工作方式,你了解吗?
在上一篇<DNS 系列(一):为什么更新了 DNS 记录不生效?>中,我们主要讲解了 DNS 和 DNS 传播,知道了网络通信主要通过 IP 地址来进行,而域名系统(DNS)则是保证用户在 ...
- JAVA解压.Z及.ZIP文件
<!-- https://mvnrepository.com/artifact/org.apache.commons/commons-compress --> <dependency ...