LGP6276题解
众所周知,排列是一个置换,一个置换是一车环。
步数就是这些环长的 \(lcm\)。
如果你去思考直接 DP,会发现很困难,根本设不出来状态。于是考虑正难则反:每个质数幂 \(p^k\) 对答案的贡献。
可以发现,如果设 \(f[p^k]\) 是 \(p^k\) 在 \(f[p^k]\) 个排列的 \(lcm\) 中出现过,那么答案是 \(\sum_{p^k\leq n}p^{f[p^k]}\)。
考虑去计算这个 \(f\)。计算出现过似乎也很困难,正难则反计算没出现过的。(后文令 \(t=p^k\))
然后有一个显然的 DP:设 \(dp[n]\) 为 \(n\) 个元素构成的置换群中,没有一个环的长度是 \(t\) 的倍数。那么似乎只需要从非 \(t\) 的倍数转移过来就可以了。
但是我们并不会计算新加入若干个元素会产生多少个新排列。考虑原本有 \(n\) 个元素的情况下加入了一个大小为 \(m\) 的环。
我们强制钦定 \(1\) 必须在这个环中,那么我们还需要从 \([2,n+m]\) 中选出 \([m-1]\) 个数,然后有 \((m-1)!\) 种不同的排列方式。所以方案数乘上了 \(\binom{n+m-1}{m-1}(m-1)!=\frac{(n+m-1)!}{n!}\)。
然后我们好像会了 \(O(n^3)\) 计算这个玩意儿(
考虑优化,正难则反。我们不计算非 \(t\) 倍数位置转移过来的值,考虑维护前面所有位置转移过来的值减去 \(t\) 倍数转移过来的值。这个是很好维护的。
于是做到了 \(O(n^2)\)。
#include<cstdio>
typedef unsigned ui;
typedef __uint128_t LL;
typedef unsigned long long ull;
const ui M=7505;
struct Barrett{
ull m,b;
Barrett(const ui&m=1):m(m),b(((LL(1)<<80)+m-1)/m){}
friend inline ull operator%(const ull&a,const Barrett&mod){
return a-mod.m*(LL(mod.b)*a>>80);
}
}mod,MOD;
ui n,m,tm,TM,c[M],S[M],dp[M],minp[M];
inline ui pow(ui a,ui b){
ui ans(1);for(;b;b>>=1,a=1ull*a*a%mod)if(b&1)ans=1ull*ans*a%mod;return ans;
}
signed main(){
ui ans(1),fac(1);
scanf("%u%u",&n,&m);minp[1]=1;
mod=Barrett(tm=m);MOD=Barrett(TM=m-1);
for(ui i=1;i<=n;++i)c[i]=1,fac=1ull*fac*i%MOD;
for(ui i=2;i<=n;++i)if(!minp[i]){
for(ui j=i*i;j<=n;j+=i)minp[j]=1;
for(ui j=i;j<=n;j*=i)minp[j]=i;
}
for(ui i=2;i<=n;++i){
for(ui j=1;j+i-1<=n;++j)c[j]=1ull*c[j]*(i+j-2)%MOD;
if(minp[i]<=1)continue;
const ui&pk=i;ui sum(1);
dp[0]=1;S[0]=1;
for(ui i=1;i<=n;++i){
if(pk<=i)S[i]=1ull*S[i-pk]*c[i-pk+1]%MOD;else S[i]=0;
dp[i]=(TM+sum-S[i])%MOD;
S[i]=(1ull*S[i]*i+dp[i])%MOD;
sum=(1ull*sum*i+dp[i])%MOD;
}
ans=1ull*ans*pow(minp[i],TM+fac-dp[n])%mod;
}
printf("%u",ans);
}
但是这样真的够快吗?
考虑生成函数。
置换是一个典型的有标号计数问题。只需要计算出一个环的 EGF 再将其 \(\exp\) 即可。
而一个环的 EGF 显然是 \(\sum_{i=1}\frac{(i-1)!}{i!}x^i-\sum_{i=1}\frac{(it-1)!}{(it)!}x^{it}\)。
\]
\]
\]
\]
注意到 \(\frac{1}{1-x}\) 是前缀和,分子又只在 \(t\) 的倍数处有值,所以可以考虑改写一下这个东西:
\]
\]
\]
剩下的就交给广义二项式定理吧。
设 \(m=\lfloor\frac{n}{t}\rfloor\):
\]
\]
\]
但是这个是在指数上做的,所以模数并不是质数。
注意到这个 \(it\) 将 \(n!\) 分成了 \(m+1\) 段,可以将 \(n!\) 看做一个序列,我们只需要支持查询区间乘积即可。
使用猫树可以做到 \(O(n\log n)\) 的复杂度。
#include<cstdio>
typedef unsigned ui;
typedef __uint128_t LL;
typedef unsigned long long ull;
const ui M=7505;
ui n,m,minp[M];
struct Barrett{
ull m,b;
Barrett(const ui&m=1):m(m),b(((LL(1)<<80)+m-1)/m){}
friend inline ull operator%(const ull&a,const Barrett&mod){
return a-mod.m*(LL(mod.b)*a>>80);
}
}mod,MOD;
struct DS{
ui D,len,lg[8192],prod[15][8192];
inline void init(const ui&n){
D=0;len=1;
while((1<<D)<=n)++D,len<<=1;
for(ui i=1;i<=len;++i)prod[0][i]=i;
for(ui i=1;i<=len;++i)lg[i]=lg[i>>1]+1;
for(ui d=1;d<=D;++d){
for(ui k=1;k<=(len>>d);++k){
const ui&L=k-1<<d,&R=k<<d,&mid=L+R>>1;
prod[d][mid]=mid;prod[d][mid+1]=mid+1;
for(ui i=mid-1;i>=L+1;--i)prod[d][i]=1ull*prod[d][i+1]*i%MOD;
for(ui i=mid+1+1;i<=R;++i)prod[d][i]=1ull*prod[d][i-1]*i%MOD;
}
}
}
inline ui operator()(const ui&L,const ui&R){
if(L>R)return 1;if(L==R)return L;
ui d=lg[L-1^R-1];return 1ull*prod[d][L]*prod[d][R]%MOD;
}
}SGT;
inline ui pow(ui a,ui b){
ui ans(1);for(;b;b>>=1,a=1ull*a*a%mod)if(b&1)ans=1ull*ans*a%mod;return ans;
}
inline ui Solve(const ui&k){
const ui&m=n/k;ui ans;ans=SGT(m*k+1,n);
for(ui i=1;i<=m;++i)ans=1ull*ans*SGT((i-1)*k+1,i*k-1)%MOD,ans=1ull*ans*(i*k-1)%MOD;
return ans;
}
signed main(){
ui ans(1),fac(1);
scanf("%u%u",&n,&m);
mod=Barrett(m);MOD=Barrett(m-1);SGT.init(n);
for(ui i=1;i<=n;++i)fac=1ull*fac*i%MOD;
for(ui i=2;i<=n;++i){
if(!minp[i]){
for(ui j=i*i;j<=n;j+=i)minp[j]=1;
for(ui j=i;j<=n;j*=i)minp[j]=i;
}
if(minp[i]>1)ans=1ull*ans*pow(minp[i],m-1+fac-Solve(i))%mod;
}
printf("%u",ans);
}
LGP6276题解的更多相关文章
- 2016 华南师大ACM校赛 SCNUCPC 非官方题解
我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...
- noip2016十连测题解
以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...
- BZOJ-2561-最小生成树 题解(最小割)
2561: 最小生成树(题解) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1628 Solved: 786 传送门:http://www.lyd ...
- Codeforces Round #353 (Div. 2) ABCDE 题解 python
Problems # Name A Infinite Sequence standard input/output 1 s, 256 MB x3509 B Restoring P ...
- 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解
题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...
- 2016ACM青岛区域赛题解
A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Jav ...
- poj1399 hoj1037 Direct Visibility 题解 (宽搜)
http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...
- 网络流n题 题解
学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...
- CF100965C题解..
求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...
随机推荐
- MySQL的注释方法
MySQL的三种注释方式 #1.单行注释 -- 2.单行注释(注意中间要带有一个空格才能生效) /*3.多行注释*/
- CSS快速入门(四)
目录 CSS快速入门(四) 浮动 float属性 clear属性 浮动解决的问题及其影响 解决父标签塌陷的方法 浮动案例 定位 什么是脱离文档流 定位的两种方法 position定位 static定位 ...
- 添加了tabBar之后就不能使用wx.navigateTo跳转页面
我在app.json中添加了增加底部选项卡的代码如下: { "pages": [ "pages/index/index", "pages/lo ...
- linux用户用户组与ACL
使用者ID:UID与GID 在使用Linux的过程中,经常会遇到各种用户ID(user identifier, UID)和组ID(group identifier, GID),Linux也是通过对这些 ...
- JVM性能调优与实战基础理论篇-中
JVM内存模型 概述 我们所说的JVM内存模型是指运行时数据区,用New出来的对象放在堆中,如每个线程中局部变量放在栈或叫虚拟机栈中,下图左边区域部分为栈内存的结构.如main线程包含程序炯酸器.线程 ...
- [LeetCode]1.Two Sum 两数之和(Java)
原题地址:two-sum 题目描述: 给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标. 你可以假设每 ...
- nginx反向代理初体验
需求:部署两台tomcat,默认监听端口分别是8080和8081.访问nginx服务时,自动跳转到相应tomcat服务. 先部署一台机器:就宿主机上tomcat服务: 修改nginx配置:vim ng ...
- 生成式AI会成为是人工智能的未来吗
生成式 AI 是一项创新技术,可帮助算法人员生成以前依赖于业务员的模型,提供创造性的结果,而不会因业务员思想和经验而产生任何差错. 人工智能中的这项新技术确定了输入的原始模型,以生成演示训练数据特征. ...
- 【基础篇】js对本地文件增删改查--改
前置条件: 1. 本地有安装node,点击传送门 项目目录: 1. msg.json内容 { "data": [ { "id": 1, "name&q ...
- 【性能测试实战:jmeter+k8s+微服务+skywalking+efk】系列之:性能监控、分析、调优等
说明: 本文是基于虚拟机演示的,资源有限 skywalking中拓扑图 kubectl get po -A -owide 测试执行:单场景 查询礼品 jmeter -n -t gift.jmx -l ...