众所周知,排列是一个置换,一个置换是一车环。

步数就是这些环长的 \(lcm\)。

如果你去思考直接 DP,会发现很困难,根本设不出来状态。于是考虑正难则反:每个质数幂 \(p^k\) 对答案的贡献。

可以发现,如果设 \(f[p^k]\) 是 \(p^k\) 在 \(f[p^k]\) 个排列的 \(lcm\) 中出现过,那么答案是 \(\sum_{p^k\leq n}p^{f[p^k]}\)。

考虑去计算这个 \(f\)。计算出现过似乎也很困难,正难则反计算没出现过的。(后文令 \(t=p^k\))

然后有一个显然的 DP:设 \(dp[n]\) 为 \(n\) 个元素构成的置换群中,没有一个环的长度是 \(t\) 的倍数。那么似乎只需要从非 \(t\) 的倍数转移过来就可以了。

但是我们并不会计算新加入若干个元素会产生多少个新排列。考虑原本有 \(n\) 个元素的情况下加入了一个大小为 \(m\) 的环。

我们强制钦定 \(1\) 必须在这个环中,那么我们还需要从 \([2,n+m]\) 中选出 \([m-1]\) 个数,然后有 \((m-1)!\) 种不同的排列方式。所以方案数乘上了 \(\binom{n+m-1}{m-1}(m-1)!=\frac{(n+m-1)!}{n!}\)。

然后我们好像会了 \(O(n^3)\) 计算这个玩意儿(

考虑优化,正难则反。我们不计算非 \(t\) 倍数位置转移过来的值,考虑维护前面所有位置转移过来的值减去 \(t\) 倍数转移过来的值。这个是很好维护的。

于是做到了 \(O(n^2)\)。

#include<cstdio>
typedef unsigned ui;
typedef __uint128_t LL;
typedef unsigned long long ull;
const ui M=7505;
struct Barrett{
ull m,b;
Barrett(const ui&m=1):m(m),b(((LL(1)<<80)+m-1)/m){}
friend inline ull operator%(const ull&a,const Barrett&mod){
return a-mod.m*(LL(mod.b)*a>>80);
}
}mod,MOD;
ui n,m,tm,TM,c[M],S[M],dp[M],minp[M];
inline ui pow(ui a,ui b){
ui ans(1);for(;b;b>>=1,a=1ull*a*a%mod)if(b&1)ans=1ull*ans*a%mod;return ans;
}
signed main(){
ui ans(1),fac(1);
scanf("%u%u",&n,&m);minp[1]=1;
mod=Barrett(tm=m);MOD=Barrett(TM=m-1);
for(ui i=1;i<=n;++i)c[i]=1,fac=1ull*fac*i%MOD;
for(ui i=2;i<=n;++i)if(!minp[i]){
for(ui j=i*i;j<=n;j+=i)minp[j]=1;
for(ui j=i;j<=n;j*=i)minp[j]=i;
}
for(ui i=2;i<=n;++i){
for(ui j=1;j+i-1<=n;++j)c[j]=1ull*c[j]*(i+j-2)%MOD;
if(minp[i]<=1)continue;
const ui&pk=i;ui sum(1);
dp[0]=1;S[0]=1;
for(ui i=1;i<=n;++i){
if(pk<=i)S[i]=1ull*S[i-pk]*c[i-pk+1]%MOD;else S[i]=0;
dp[i]=(TM+sum-S[i])%MOD;
S[i]=(1ull*S[i]*i+dp[i])%MOD;
sum=(1ull*sum*i+dp[i])%MOD;
}
ans=1ull*ans*pow(minp[i],TM+fac-dp[n])%mod;
}
printf("%u",ans);
}

但是这样真的够快吗?

考虑生成函数。

置换是一个典型的有标号计数问题。只需要计算出一个环的 EGF 再将其 \(\exp\) 即可。

而一个环的 EGF 显然是 \(\sum_{i=1}\frac{(i-1)!}{i!}x^i-\sum_{i=1}\frac{(it-1)!}{(it)!}x^{it}\)。

\[\exp(\sum_{i=1}\frac{(i-1)!}{i!}x^i-\sum_{i=1}\frac{(it-1)!}{(it)!}x^{it})
\]
\[\exp(\sum_{i=1}\frac{1}{i}x^i-\sum_{i=1}\frac{1}{it}x^{it})
\]
\[\exp(-\ln(1-x)+\frac{1}{t}\ln(1-x^{t}))
\]
\[\frac{(1-x^t)^{\frac{1}{t}}}{1-x}
\]

注意到 \(\frac{1}{1-x}\) 是前缀和,分子又只在 \(t\) 的倍数处有值,所以可以考虑改写一下这个东西:

\[[\frac{x^n}{n!}]\frac{(1-x^{t})^{\frac{1}{t}}}{1-x}
\]
\[[\frac{x^n}{n!}]\frac{(1-x^{t})^{\frac{1}{t}}}{1-x^{t}}
\]
\[n![x^{\lfloor\frac{n}{t}\rfloor}](1-x)^{\frac{1}{t}-1}
\]

剩下的就交给广义二项式定理吧。

设 \(m=\lfloor\frac{n}{t}\rfloor\):

\[n!\binom{\frac{1}{t}-1}{m!}(-1)^{m}
\]
\[n!\prod_{i=1}^{m}-\frac{\frac{1}{t}-1-i+1}{i}
\]
\[n!\prod_{i=1}^{m}\frac{it-1}{it}
\]

但是这个是在指数上做的,所以模数并不是质数。

注意到这个 \(it\) 将 \(n!\) 分成了 \(m+1\) 段,可以将 \(n!\) 看做一个序列,我们只需要支持查询区间乘积即可。

使用猫树可以做到 \(O(n\log n)\) 的复杂度。

#include<cstdio>
typedef unsigned ui;
typedef __uint128_t LL;
typedef unsigned long long ull;
const ui M=7505;
ui n,m,minp[M];
struct Barrett{
ull m,b;
Barrett(const ui&m=1):m(m),b(((LL(1)<<80)+m-1)/m){}
friend inline ull operator%(const ull&a,const Barrett&mod){
return a-mod.m*(LL(mod.b)*a>>80);
}
}mod,MOD;
struct DS{
ui D,len,lg[8192],prod[15][8192];
inline void init(const ui&n){
D=0;len=1;
while((1<<D)<=n)++D,len<<=1;
for(ui i=1;i<=len;++i)prod[0][i]=i;
for(ui i=1;i<=len;++i)lg[i]=lg[i>>1]+1;
for(ui d=1;d<=D;++d){
for(ui k=1;k<=(len>>d);++k){
const ui&L=k-1<<d,&R=k<<d,&mid=L+R>>1;
prod[d][mid]=mid;prod[d][mid+1]=mid+1;
for(ui i=mid-1;i>=L+1;--i)prod[d][i]=1ull*prod[d][i+1]*i%MOD;
for(ui i=mid+1+1;i<=R;++i)prod[d][i]=1ull*prod[d][i-1]*i%MOD;
}
}
}
inline ui operator()(const ui&L,const ui&R){
if(L>R)return 1;if(L==R)return L;
ui d=lg[L-1^R-1];return 1ull*prod[d][L]*prod[d][R]%MOD;
}
}SGT;
inline ui pow(ui a,ui b){
ui ans(1);for(;b;b>>=1,a=1ull*a*a%mod)if(b&1)ans=1ull*ans*a%mod;return ans;
}
inline ui Solve(const ui&k){
const ui&m=n/k;ui ans;ans=SGT(m*k+1,n);
for(ui i=1;i<=m;++i)ans=1ull*ans*SGT((i-1)*k+1,i*k-1)%MOD,ans=1ull*ans*(i*k-1)%MOD;
return ans;
}
signed main(){
ui ans(1),fac(1);
scanf("%u%u",&n,&m);
mod=Barrett(m);MOD=Barrett(m-1);SGT.init(n);
for(ui i=1;i<=n;++i)fac=1ull*fac*i%MOD;
for(ui i=2;i<=n;++i){
if(!minp[i]){
for(ui j=i*i;j<=n;j+=i)minp[j]=1;
for(ui j=i;j<=n;j*=i)minp[j]=i;
}
if(minp[i]>1)ans=1ull*ans*pow(minp[i],m-1+fac-Solve(i))%mod;
}
printf("%u",ans);
}

LGP6276题解的更多相关文章

  1. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  2. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  3. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  4. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  5. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  6. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  7. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

  8. 网络流n题 题解

    学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...

  9. CF100965C题解..

    求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...

随机推荐

  1. jvm与dvm两种虚拟机的不同

    jvm : java虚拟机 sun dvm:  dalvik虚拟机  google     区别:         1.基于的架构不同,jvm 基于栈架构,栈是位于内存上的一个空间,执行指令操作,需要 ...

  2. web常用开发工具

    1.WebStorm[推荐] WebStorm 是jetbrains公司旗下一款JavaScript 开发工具.目前已经被广大中国JS开发者誉为"Web前端开发神器"." ...

  3. Callable接口及Futrue接口详解

    Callable接口 有两种创建线程的方法-一种是通过创建Thread类,另一种是通过使用Runnable创建线程.但是,Runnable缺少的一项功能是,当线程终止时(即run()完成时),我们无法 ...

  4. iis7下的php实现urlrewrite,并隐藏index.php

    1 <rewrite> 2 <rules> 3 <rule name="OrgPage" stopProcessing="true" ...

  5. MySQL-MMM高可用架构

    MySQL-MMM高可用架构 目录 MySQL-MMM高可用架构 一.MMM 1. MMM的概述 2. MMM的应用场景 3. MMM的特点 4. 关于MMM高可用架构的说明 5. 用户及授权 二.案 ...

  6. 浅谈java代理模式

    讲解java代理模式 目录 讲解java代理模式 何谓代理模式 静态代理 动态代理 JDK动态代理 CGLIB动态代理 何谓代理模式 代理模式,即Proxy Pattern,23种java常用设计模式 ...

  7. Solution Set - Stirling 数相关杂题

      <好多题的题解>   「洛谷 P5408」第一类斯特林数·行   根据结论 \[x^{\overline{n}}=\sum_i{n\brack i}x^i, \] 我们只需要求出 \( ...

  8. python控制浏览器上传文件

    自动化爬虫方法和库很多,难点大多数在登录.可以大致分为:普通验证码,扫码登录,QQ一键登录,拖动验证,无痕验证,人工识别(比如12306登录) 万能大法可以破解一切以上需求,自动控制浏览器行为 参考文 ...

  9. Clickhouse - Replication机制

    Clickhouse - Replication机制 1. Replication引擎族 Replication仅对于MergeTree引擎族提供支持, 两者是正交的: ReplicatedMerge ...

  10. Tabluea、Smartbi可视化仪表盘创建流程图分享

    你知道Tableau.Smartbi在可视化仪表盘制作步骤上有何差异吗?下面一起来了解吧~ 根据上面的流程图我们可以了解到,不同于Smartbi是在同一界面即可完成的,Tableau是由很多个工作表组 ...