05tensorflow分布式会话
一. tensorflow分布式
1. 概念
分布式Tensorflow是由高性能的gRPC框架作为底层技术来支持的。这是一个通信框架gRPC(google remote procedure call),是一个高性能、跨平台的RPC框架。RPC协议,即远程过程调用协议,是指通过网络从远程计算机程序上请求服务。
2. 模式
1)单机单卡 一台服务器上多台设备(GPU)
2)多机多卡(分布式)
l 参数服务器(parameter server)ps:更新参数、保存参数
l 工作服务器(worker):主要功能是计算。worker节点中需要一个主节点来进行会话初始化,创建文件等操作,其他节点等待进行计算
二. API
1. 分布式会话
MonitoredTrainingSession(master=‘’,is_chief=True,checkpoint_dir=None,hooks=None,save_checkpoint_secs=600,save_summaries_steps=USE_DEFAULT,save_summaries_secs=USE_DEFAULT,config=None) 分布式会话函数
- master:指定运行会话协议IP和端口(用于分布式)
“grpc://192.168.0.1:2000”
- is_chief是否为主worker(用于分布式)
如果True,它将负责初始化和恢复基础的TensorFlow会话。如果False,
它将等待一位负责人初始化或恢复TensorFlow会话。
- checkpoint_dir:检查点文件目录,同时也是events目录
- config:会话运行的配置项, tf.ConfigProto(log_device_placement=True)
- hooks:可选SessionRunHook对象列表
生成的对象可调用的函数:
- should_stop():是否异常停止
- run():跟session一样可以运行op
2. Hook
tf.train.SessionRunHook
- Hook to extend calls to MonitoredSession.run()
- 1、begin():
- 在会话之前,做初始化工作
- 2、before_run(run_context)
在每次调用run()之前调用,以添加run()中的参数。
ARGS:
run_context:一个SessionRunContext对象,包含会话运行信息
return:一个SessionRunArgs对象,例如:tf.train.SessionRunArgs(loss)
- 3、after_run(run_context,run_values)
在每次调用run()后调用,一般用于运行之后的结果处理
该run_values参数包含所请求的操作/张量的结果 before_run()。
该run_context参数是相同的一个发送到before_run呼叫。
ARGS:
run_context:一个SessionRunContext对象
run_values一个SessionRunValues对象, run_values.results
注:在使用钩子的时候需要定义一个全局步数
global_step =
tf.contrib.framework.get_or_create_global_step()
3.
创建集群
cluster =
tf.train.ClusterSpec({"ps": ps_spec, "worker":
worker_spec})
cluster = tf.train.ClusterSpec({
“worker”:[“worker0.example.com:2222”,
/job:worker/task:0
“worker1.example.com:2222”, /job:worker/task:1
“worker2.example.com:2222”],
/job:worker/task:2
"ps":
[“ps0.example.com:2222”, /job:ps/task:0
“ps1.example.com:2222”] /job:ps/task:1
})
4.
创建服务
tf.train.Server(server_or_cluster_def,
job_name=None, task_index=None, protocol=None, config=None, start=True) 创建服务(ps,worker)
l server_or_cluster_def: 集群描述
l job_name: 任务类型名称
l task_index: 任务数
attribute:target
返回tf.Session连接到此服务器的目标
method:join()
参数服务器端,直到服务器等待接受参数任务关闭
5.
工作节点指定设备运行
tf.device(device_name_or_function)
- 选择指定设备或者设备函数
- if device_name:
- 指定设备
- 例如:"/job:worker/task:0/cpu:0”
- if function:
- tf.train.replica_device_setter(worker_device=worker_device,cluster=cluster)
- 作用:通过此函数协调不同设备上的初始化操作
- worker_device:为指定设备,
“/job:worker/task:0/cpu:0” or"/job:worker/task:0/gpu:0"
- cluster:集群描述对象
注:使用with tf.device(),使不同工作节点工作在不同的设备上
三. 案例
1 import tensorflow as tf
2
3 FLAGS = tf.app.flags.FLAGS
4
5 tf.app.flags.DEFINE_string("job_name", " ", "启动服务的类型ps or worker")
6 tf.app.flags.DEFINE_integer("task_index", 0, "指定ps或者worker当中的那一台服务器以task:0 ,task:1")
7
8 def main(argv):
9
10 # 定义全集计数的op ,给钩子列表当中的训练步数使用
11 global_step = tf.contrib.framework.get_or_create_global_step()
12
13 # 指定集群描述对象, ps , worker
14 cluster = tf.train.ClusterSpec({"ps": ["10.211.55.3:2223"], "worker": ["192.168.65.44:2222"]})
15
16 # 创建不同的服务, ps, worker
17 server = tf.train.Server(cluster, job_name=FLAGS.job_name, task_index=FLAGS.task_index)
18
19 # 根据不同服务做不同的事情 ps:去更新保存参数 worker:指定设备去运行模型计算
20 if FLAGS.job_name == "ps":
21 # 参数服务器什么都不用干,是需要等待worker传递参数
22 server.join()
23 else:
24 worker_device = "/job:worker/task:0/cpu:0/"
25
26 # 可以指定设备取运行
27 with tf.device(tf.train.replica_device_setter(
28 worker_device=worker_device,
29 cluster=cluster
30 )):
31 # 简单做一个矩阵乘法运算
32 x = tf.Variable([[1, 2, 3, 4]])
33 w = tf.Variable([[2], [2], [2], [2]])
34
35 mat = tf.matmul(x, w)
36
37 # 创建分布式会话
38 with tf.train.MonitoredTrainingSession(
39 master= "grpc://192.168.65.44:2222", # 指定主worker
40 is_chief= (FLAGS.task_index == 0),# 判断是否是主worker
41 config=tf.ConfigProto(log_device_placement=True),# 打印设备信息
42 hooks=[tf.train.StopAtStepHook(last_step=200)]
43 ) as mon_sess:
44 while not mon_sess.should_stop():
45 print(mon_sess.run(mat))
46
47
48 if __name__ == "__main__":
49 tf.app.run()
05tensorflow分布式会话的更多相关文章
- 补习系列(15)-springboot 分布式会话原理
目录 一.背景 二.SpringBoot 分布式会话 三.样例程序 四.原理进阶 A. 序列化 B. 会话代理 C. 数据老化 小结 一.背景 在 补习系列(3)-springboot 几种scope ...
- 004-restful应用构建、分布式会话、测试工具简介
一.概述 什么是rest(表述性状态转移,Representational State Transfer)是一种架构风格.他定义了创建可扩展Web服务的最佳实践. 1.Richardson成熟度模型 ...
- 第二十三章 多项目集中权限管理及分布式会话——《跟我学Shiro》
二十三章 多项目集中权限管理及分布式会话——<跟我学Shiro> 博客分类: 跟我学Shiro 跟我学Shiro 目录贴:跟我学Shiro目录贴 在做一些企业内部项目时或一些互联网后台时 ...
- 使用Redis实现分布式会话
1. 概述 传统的单体应用中,用户是否登录,通常是通过从Tomcat容器的session中获取登录用户信息判断的. 但在分布式的应用中,通常负载均衡了多台Tomcat,每台Tomcat都有自己独立的s ...
- 使用Spring Session做分布式会话管理
在Web项目开发中,会话管理是一个很重要的部分,用于存储与用户相关的数据.通常是由符合session规范的容器来负责存储管理,也就是一旦容器关闭,重启会导致会话失效.因此打造一个高可用性的系统,必须将 ...
- 使用SpringSession管理分布式会话时遇到的反序列化问题
关于SpringSession相关的介绍和使用指南,可移步如下网址: [SpringSession管理分布式系统的会话Session] https://www.cnblogs.com/captaina ...
- [源码解析] TensorFlow 分布式环境(1) --- 总体架构
[源码解析] TensorFlow 分布式环境(1) --- 总体架构 目录 [源码解析] TensorFlow 分布式环境(1) --- 总体架构 1. 总体架构 1.1 集群角度 1.1.1 概念 ...
- [源码解析] TensorFlow 分布式环境(2)---Master 静态逻辑
[源码解析] TensorFlow 分布式环境(2)---Master 静态逻辑 目录 [源码解析] TensorFlow 分布式环境(2)---Master 静态逻辑 1. 总述 2. 接口 2.1 ...
- [源码解析] TensorFlow 分布式环境(3)--- Worker 静态逻辑
[源码解析] TensorFlow 分布式环境(3)--- Worker 静态逻辑 目录 [源码解析] TensorFlow 分布式环境(3)--- Worker 静态逻辑 1. 继承关系 1.1 角 ...
随机推荐
- php include,require,include_once,require_once 的区别
include(),require(),include_once(),require_once()作用都是包含并运行指定文件,但是使用场景又有很大区别. 1.include()和require()的区 ...
- PHP中常见的数字掐头去尾操作方法
四舍五入round round( float $val[, int $precision = 0[, int $mode = PHP_ROUND_HALF_UP]] ) : float 对浮点数进行四 ...
- C++ XML解析之TinyXML
转载请注明来源:https://www.cnblogs.com/hookjc/ 使用TinyXML进行C++ XML解析,感觉使用起来比较简单,很容易上手,本文给出一个使用TinyXML进行XML解析 ...
- 【转载】Locust实现集合点
直接编写接口事务脚本对后台接口进行测试:有时测试需要让所有并发用户完成初始化后再进行压力测试,这就需要类似于LoadRunner中的集合点的概念,由于框架本身没有直接封装,有如下办法实现: from ...
- 【转】 Python生成器generator之next和send运行流程
原文链接:https://blog.csdn.net/pfm685757/article/details/49924099 对于普通的生成器,第一个next调用,相当于启动生成器,会从生成器函数的第一 ...
- Ansible自动化运维工具及其常用模块
Ansible自动化运维工具及其常用模块 目录 Ansible自动化运维工具及其常用模块 一.Ansible简介 1. Ansible概述 2. Ansible作用 3. Ansible的工作模块 4 ...
- 微信小程序开发常用功能
获取用户信息 调用 wx.getUserProfile 方法获取用户基本信息.页面产生点击事件(例如 button 上 bindtap 的回调中)后才可调用,每次请求都会弹出授权窗口,用户同意后返回 ...
- Ubuntu18配置静态IP地址
1. 记住网卡名称 ifconfig 2. 记住网关地址 netstat -rn 3. 配置静态IP 注意:Ubuntu18固定IP的方式跟Ubuntu18之前版本的的配置方式不同, Ubuntu18 ...
- Solution -「AGC 029E」「AT 4504」Wandering TKHS
\(\mathcal{Description}\) Link. 给一棵 \(n\) 个点的树,从某个点出发,遍历时必须走到已经走过的连通块所邻接的编号最小的结点.求从每个点出发,走到 \(1\ ...
- 在ABP VNext框架中处理和用户相关的多对多的关系
前面介绍了一些ABP VNext架构上的内容,随着内容的细化,我们会发现ABP VNext框架中的Entity Framework处理表之间的引用关系还是比较麻烦的,一不小心就容易出错了,本篇随笔介绍 ...