Andrew Ng 机器学习笔记 ---By Orangestar

Week_6 (1)


In Week 6, you will be learning about systematically improving your learning algorithm. The videos for this week will teach you how to tell when a learning algorithm is doing poorly, and describe the 'best practices' for how to 'debug' your learning algorithm and go about improving its performance.


1. Deciding What to Try Next

如何改进算法?

  1. 使用更多样本
  2. 尝试更少的特征参数
  3. 尝试用更多的特征参数
  4. 尝试多元参数
  5. 试着降低或者升高正则参数

但是,选择一种有效的方法是困难的

所以,我们需要评估一个机器学习算法的性能的方法

Machine learning diagnostic

定义:

2. Evaluating a Hypothesis

如何评估假设函数以及避免过拟合和欠拟合?

如何评价假设函数?

将数据分割:按照某个比例

1.常用训练集

2.测试集

基本步骤:

  • (回归问题):(线性回归)

  • (分类问题):(逻辑回归)

    差不多,用测试集评估。

    问题是:如何计算error(0/1)?

    其实和之前差不多,要定义决策界限

    用0/1错分率来定义error

总结:

3. Model Selection and Train/Validation /Test Sets

模型选择问题//训练集//验证集//测试集

  1. 模型选择:

    还需要选择一个参数d. 也就是最高次数。

    可以逐个选择,然后逐个算出测试集的误差函数。

    然后观察哪个最小。

    而且,这样选出的模型,可能仅仅是可以很好的拟合测试集,但是其他的说不定。所以,我们仅仅是用测试集来拟合样本。不公平!

    所以,我们可以用 交叉验证集!cross validation set

    现在把数据集分为3个部分:

    就是说,验证是最好的模型,可以用交叉验证集来检验!然后,就没有和测试集进行拟合,回避了测试集的嫌疑

    一般的比例为:

4. Diagnosing Bias vs. Variance

如何判断一个算法,是和方差有问题还是和偏差有问题?

用图像来直观理解

注意理解bias error 和 variance error

也就是,区分过拟合和欠拟合的情况

当然,这两种情况都是不好的!

5. Regularization and Bias / Variance

更深入地 探讨一下偏差和方差的问题 讨论一下两者之间 是如何相互影响的 以及和算法的正则化之间的相互关系

首先,我们来看一下正则项:

当然,我们需要先用交叉验证集上进行选择模型

再试着用哪一个正则项更好。来得到最小的J_train_

如图:

总结步骤:

  • for each λ go through all the models to learn some Θ.
  • without regularization or λ = 0

    以上两点很重要

6. 学习曲线learning curves

一种模型,当训练集的样本增加的时候,error是越来越大的

  • 高偏差情况high bias(欠拟合)

结论:

所以,如果模型是高偏差,再多的样本来拟合,也不太会管用

  • 高方差情况high variance(过拟合)

这种情况下,使用更多的样本是有帮助的

总结:

画出曲线,可以更容易看出是高偏差还是高方差的问题,然后来选择改进算法

7. Deciding What to Do Next Revisited

当我们发现方差或者偏差出了问题,我们应该怎么做?

  • 如何和神经网络联系/

    如果发生过拟合,可以使用正则化

    但是,计算量更大。

  • 如何选择hiding layer?

    想用多个隐藏层。可以尝试着数据分割。


总结:

Our decision process can be broken down as follows:

  • Getting more training examples: Fixes high variance

  • Trying smaller sets of features: Fixes high variance

  • Adding features: Fixes high bias

  • Adding polynomial features: Fixes high bias

  • Decreasing λ: Fixes high bias

  • Increasing λ: Fixes high variance.

Diagnosing Neural Networks

  • A neural network with fewer parameters is prone to underfitting. It is also computationally cheaper.
  • A large neural network with more parameters is prone to overfitting. It is also computationally expensive. In this case you can use regularization (increase λ) to address the over-fitting.

Using a single hidden layer is a good starting default. You can train your neural network on a number of hidden layers using your cross validation set. You can then select the one that performs best.

Model Complexity Effects:

  • Lower-order polynomials (low model complexity) have high bias and low variance. In this case, the model fits poorly consistently.
  • Higher-order polynomials (high model complexity) fit the training data extremely well and the test data extremely poorly. These have low bias on the training data, but very high variance.
  • In reality, we would want to choose a model somewhere in between, that can generalize well but also fits the data reasonably well.

week_6的更多相关文章

随机推荐

  1. ​打造企业自己代码规范IDEA插件(上)

    "交流互鉴是文明发展的本质要求.只有同其他文明交流互鉴.取长补短,才能保持旺盛生命活力." 这说的是文明,但映射到计算机技术本身也是相通的,开源代码/项目就是一种很好的技术交流方式 ...

  2. C++运算符重载(简单易懂)

    转载:https://www.cnblogs.com/liuchenxu123/p/12538623.html 运算符重载,就是对已有的运算符重新进行定义,赋予其另一种功能,以适应不同的数据类型. 你 ...

  3. Period of an Infinite Binary Expansion 题解

    Solution 简单写一下思考过程,比较水的数论题 第一个答案几乎已经是可以背下来的,在此不再赘述 考虑我们已经知道了\((p,q)\),其中\((p \perp q) \wedge (q \per ...

  4. 齐博x1小程序集群一个重要功能升级,可以根据圈子会员组显示不同的菜单。

    如下图所示,虽然之前圈子小程序可以自定义会员中心菜单,但是存在一个问题,就是所有会员,比如圈主与普通会员的菜单都将是一样的. 现在升级后,就可以设置不同的圈子会员组,拥有不同的菜单. 比如一个商家,店 ...

  5. JavaScript基础复盘补缺

    语法规范 JavaScript严格区分大小写,对空格.换行.缩进不敏感,建议语句结束加':' JavaScript 会忽略多个空格.您可以向脚本添加空格,以增强可读性. JavaScript 程序员倾 ...

  6. 题解 AT2361 [AGC012A] AtCoder Group Contest

    \(\sf{Solution}\) 显然要用到贪心的思想. 既然最终的结果只与每组强度第二大选手有关,那就考虑如何让他的值尽可能大. 其实,从小到大排个序就能解决,越靠后的值越大,使得每组强度第二大选 ...

  7. 三、celery执行定时任务

    三.Celery执行定时任务 设定时间让celery执行一个 定时任务,product_task.py from celery_task import send_email from datetime ...

  8. 一次 Java log4j2 漏洞导致的生产问题

    一.问题 近期生产在提交了微信小程序审核后(后面会讲到),总会出现一些生产告警,而且持续时间较长.我们查看一些工具和系统相关的,发现把我们的 gateway 差不多打死了. 有一些现象. 网关有很多接 ...

  9. java代码整洁之道

    package Day01;import org.junit.Test;import java.text.NumberFormat;import java.util.Scanner;public cl ...

  10. 【题解】CF631B Print Check

    题面传送门 解决思路: 首先考虑到,一个点最终的情况只有三种可能:不被染色,被行染色,被列染色. 若一个点同时被行.列染色多次,显示出的是最后一次被染色的结果.所以我们可以使用结构体,对每一行.每一列 ...