5 小提琴图Violinplot

(代码下载)
小提琴图允许可视化一个或多个组的数字变量的分布。它与箱形图非常接近,但可以更深入地了解密度。小提琴图特别适用于数据量巨大且无法显示个别观察结果的情况。在seaborn中使用violinplot函数绘制小提琴图,该章节主要内容有:

  1. 基础小提琴图绘制 Basic violinplot
  2. 小提琴图样式自定义 Custom seaborn violinplot
  3. 小提琴图颜色自定义 Control color of seaborn violinplot
  4. 分组小提琴图 Grouped violinplot
  5. 小提琴图组的顺序设置 Control order of groups in violinplot
  6. 显示小提琴图上的观察次数 Show number of observation on violinplot
#调用seaborn
import seaborn as sns
#调用seaborn自带数据集
df = sns.load_dataset('iris')
#显示数据集
df.head()
sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 setosa
1 4.9 3.0 1.4 0.2 setosa
2 4.7 3.2 1.3 0.2 setosa
3 4.6 3.1 1.5 0.2 setosa
4 5.0 3.6 1.4 0.2 setosa

1. 基础小提琴图绘制 Basic violinplot

  • 单个变量 One numerical variable only
  • 包含多个分组的单个变量 One variable and several groups
  • 多个变量 Several variables
  • 水平小提琴图 Horizontal violinplot
# 单个变量 One numerical variable only
# 如果只有一个数值变量,则最好制作直方图或密度图,但是仍然可以用小提琴图来表示
# Make boxplot for one group only
sns.violinplot( y=df["sepal_length"] );
C:\ProgramData\Anaconda3\lib\site-packages\scipy\stats\stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.
return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

# 包含多个分组的单个变量 One variable and several groups
# x为种类名,y为花萼长度
sns.violinplot( x=df["species"], y=df["sepal_length"] );

# 多个变量 Several variables
# 单独拿出sepal_length和sepal_width绘制
sns.violinplot(data=df.iloc[:,0:2]);

# 水平小提琴图 Horizontal violinplot
# 可以通过orient设定方向,但是交换x,y画水平小提琴图更好
# Just switch x and y
sns.violinplot( y=df["species"], x=df["sepal_length"] );

2. 小提琴图样式自定义 Custom seaborn violinplot

  • 线宽自定义 Change line width
  • 图像一般宽度自定义 Change width
# 线宽自定义 Change line width
sns.violinplot( x=df["species"], y=df["sepal_length"], linewidth=5);

# 图像一般宽度自定义 Change width
sns.violinplot( x=df["species"], y=df["sepal_length"], width=0.3);

3. 小提琴图颜色自定义 Control color of seaborn violinplot

  • 使用调色板 Use a color palette
  • 单种颜色 Uniform color
  • 指定每个组的颜色 Specify color of each group
  • 突出显示一个组 Highlight a group
# 使用调色板 Use a color palette
sns.violinplot( x=df["species"], y=df["sepal_length"], palette="Blues");

# 单种颜色 Uniform color
sns.violinplot( x=df["species"], y=df["sepal_length"], color="skyblue");

# 指定每个组的颜色 Specify color of each group
# Make a dictionary with one specific color per group:
my_pal = {"versicolor": "g", "setosa": "b", "virginica":"m"}
#plot it
sns.violinplot( x=df["species"], y=df["sepal_length"], palette=my_pal);

# 突出显示一个组 Highlight a group
# make a vector of color: red for the interesting group, blue for others:
my_pal = {species: "r" if species == "versicolor" else "b" for species in df.species.unique()}
# make the plot
sns.violinplot( x=df["species"], y=df["sepal_length"], palette=my_pal);

4. 分组小提琴图 Grouped violinplot

# 如果您有一个变量,变量有几个组和子组,您可能需要制作一个分组的小提琴图。
df_test = sns.load_dataset('tips')
# Grouped violinplot 分组
sns.violinplot(x="day", y="total_bill", hue="smoker", data=df_test, palette="Pastel1");

5. 小提琴图组的顺序设置 Control order of groups in violinplot

# plot order设置顺序就行
sns.violinplot(x='species', y='sepal_length', data=df, order=[ "versicolor", "virginica", "setosa"]);

# Find the order 或者通过设置一定的规则排序
my_order = df.groupby(by=["species"])["sepal_length"].median().iloc[::-1].index
# Give it to the violinplot
sns.violinplot(x='species', y='sepal_length', data=df, order=my_order);

6. 显示小提琴图上的观察次数 Show number of observation on violinplot

# Basic violinplot 基础小提琴图像绘制
ax = sns.violinplot(x="species", y="sepal_length", data=df) # Calculate number of obs per group & median to position labels 计算各个样本数量
medians = df.groupby(['species'])['sepal_length'].median().values
nobs = df['species'].value_counts().values
nobs = [str(x) for x in nobs.tolist()]
nobs = ["n: " + i for i in nobs] # Add it to the plot 加入图像
pos = range(len(nobs))
for tick,label in zip(pos,ax.get_xticklabels()):
ax.text(pos[tick], medians[tick] + 0.03, nobs[tick], horizontalalignment='center', size='x-small', color='w', weight='semibold');

[seaborn] seaborn学习笔记5-小提琴图VIOLINPLOT的更多相关文章

  1. GIS案例学习笔记-ArcGIS整图大图出图实例教程

    GIS案例学习笔记-ArcGIS整图大图出图实例教程 联系方式:谢老师,135-4855-4328,xiexiaokui#qq.com 1. 通过出图比例尺(1:2000),地图范围测算图纸大小. 图 ...

  2. UML学习笔记:类图

    UML学习笔记:类图 有些问题,不去解决,就永远都是问题! 类图 类图(Class Diagrame)是描述类.接口以及它们之间关系的图,用来显示系统中各个类的静态结构. 类图包含2种元素:类.接口, ...

  3. UML学习笔记:活动图

    UML学习笔记:活动图 活动图 活动图是UML中描述系统动态行为的图之一,用于展现参与行为的类的活动或动作.在UML里,活动图很类似于流程图,但是有一些区别: 活动图着重表现系统行为,描述对象活动的顺 ...

  4. [seaborn] seaborn学习笔记1-箱形图Boxplot

    文章目录 1 箱形图Boxplot 1. 基础箱形图绘制 Basic boxplot and input format 2. 自定义外观 Custom boxplot appearance 3. 箱型 ...

  5. [seaborn] seaborn学习笔记4-核密度图DENSITYPLOT

    文章目录 4 核密度图Densityplot 1. 基础核密度图绘制 Basic density plot 2. 核密度图的区间控制 Control bandwidth of density plot ...

  6. [seaborn] seaborn学习笔记3-直方图Histogramplot

    文章目录 3 直方图Histogramplot 1. 基本直方图的绘制 Basic histogram 2. 数据分布与密度信息显示 Control rug and density on seabor ...

  7. JS学习笔记--轮播图效果

    希望通过自己的学习收获哪怕收获一点点,进步一点点都是值得的,加油吧!!! 本章知识点:index this for if else 下边我分享下通过老师教的方式写的轮播图,基础知识实现: 1.css代 ...

  8. 吴恩达deepLearning.ai循环神经网络RNN学习笔记_看图就懂了!!!(理论篇)

    前言 目录: RNN提出的背景 - 一个问题 - 为什么不用标准神经网络 - RNN模型怎么解决这个问题 - RNN模型适用的数据特征 - RNN几种类型 RNN模型结构 - RNN block - ...

  9. C#学习笔记思维导图 一本书22张图

    阅读的书是<21天学通C#>博客中有下载 看看总结之后的模块 全部文件 初步展示 数据存储 继承模块 暂时就这些吧 全部思维导图22张打包下载

随机推荐

  1. HFS局域网分享文件的神器(附下载链接)

    温馨提示,下载链接在页末 前言 假如说你需要传递个学习资料给好基友,我们有许多种方式可选:硬盘媒介.网络分享等. 要是论速度,还是得拿3.0或以上的U盘来拷贝,确实神速哈哈.但是其也有局限性,比如需要 ...

  2. 刷完一千道java笔试题的常见题目分析

    java基础刷题遇到的最常见问题 可以先看一下这位博主整理的java面试题(很详细,我看了好几遍了):https://blog.csdn.net/ThinkWon/article/details/10 ...

  3. 插入排序算法(Java代码实现)

    其它经典排序算法:https://blog.csdn.net/weixin_43304253/article/details/121209905 插入排序算法: 思路:将数据分为已经排序好的数据和未排 ...

  4. 使用doctest代码测试和Sphinx自动生成文档

    python代码测试并自动生成文档 Tips:两大工具:doctest--单元测试.Sphinx--自动生成文档 1.doctest doctest是python自带的一个模块.doctest有两种使 ...

  5. python制作一个小型翻译软件

    from urllib import parse,request import requests,re,execjs,json,time 英语查词翻译 class Tencent(): def ini ...

  6. Java函数式编程:三、流与函数式编程

    本文是Java函数式编程的最后一篇,承接上文: Java函数式编程:一.函数式接口,lambda表达式和方法引用 Java函数式编程:二.高阶函数,闭包,函数组合以及柯里化 前面都是概念和铺垫,主要讲 ...

  7. SpringMVC&Maven进阶

    3. SpringMVC 3.1 了解SpringMVC 概述 SpringMVC技术与Servlet技术功能等同,均属于web层开发技术 学习路线 请求与响应 REST分割 SSM整合 拦截器 目标 ...

  8. docker+nginx 安装部署修改资源目录配置文件和容器端口信息

    查看docker镜像 可以先查看docker下是否存在nginx镜像,使用如下这些命令查看: docker images: 列出所有镜像. docker images nginx: 列出所有nginx ...

  9. dojo 访问 VS 创建的Json文件 汉字乱码

    通过VS创建了一个json文件,直接保存成了文件放到了Web根目录下. 通过dojo的dojo/request访问,返回的汉字都是乱码. 通过以下方案解决. 用记事本把josn文件打开,然后点击另存为 ...

  10. 【Java并发入门】03 互斥锁(上):解决原子性问题

    原子性问题的源头是线程切换 Q:如果禁用 CPU 线程切换是不是就解决这个问题了? A:单核 CPU 可行,但到了多核 CPU 的时候,有可能是不同的核在处理同一个变量,即便不切换线程,也有问题. 所 ...