[seaborn] seaborn学习笔记5-小提琴图VIOLINPLOT
文章目录
5 小提琴图Violinplot
(代码下载)
小提琴图允许可视化一个或多个组的数字变量的分布。它与箱形图非常接近,但可以更深入地了解密度。小提琴图特别适用于数据量巨大且无法显示个别观察结果的情况。在seaborn中使用violinplot函数绘制小提琴图,该章节主要内容有:
- 基础小提琴图绘制 Basic violinplot
- 小提琴图样式自定义 Custom seaborn violinplot
- 小提琴图颜色自定义 Control color of seaborn violinplot
- 分组小提琴图 Grouped violinplot
- 小提琴图组的顺序设置 Control order of groups in violinplot
- 显示小提琴图上的观察次数 Show number of observation on violinplot
#调用seaborn
import seaborn as sns
#调用seaborn自带数据集
df = sns.load_dataset('iris')
#显示数据集
df.head()
sepal_length | sepal_width | petal_length | petal_width | species | |
---|---|---|---|---|---|
0 | 5.1 | 3.5 | 1.4 | 0.2 | setosa |
1 | 4.9 | 3.0 | 1.4 | 0.2 | setosa |
2 | 4.7 | 3.2 | 1.3 | 0.2 | setosa |
3 | 4.6 | 3.1 | 1.5 | 0.2 | setosa |
4 | 5.0 | 3.6 | 1.4 | 0.2 | setosa |
1. 基础小提琴图绘制 Basic violinplot
- 单个变量 One numerical variable only
- 包含多个分组的单个变量 One variable and several groups
- 多个变量 Several variables
- 水平小提琴图 Horizontal violinplot
# 单个变量 One numerical variable only
# 如果只有一个数值变量,则最好制作直方图或密度图,但是仍然可以用小提琴图来表示
# Make boxplot for one group only
sns.violinplot( y=df["sepal_length"] );
C:\ProgramData\Anaconda3\lib\site-packages\scipy\stats\stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.
return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval
# 包含多个分组的单个变量 One variable and several groups
# x为种类名,y为花萼长度
sns.violinplot( x=df["species"], y=df["sepal_length"] );
# 多个变量 Several variables
# 单独拿出sepal_length和sepal_width绘制
sns.violinplot(data=df.iloc[:,0:2]);
# 水平小提琴图 Horizontal violinplot
# 可以通过orient设定方向,但是交换x,y画水平小提琴图更好
# Just switch x and y
sns.violinplot( y=df["species"], x=df["sepal_length"] );
2. 小提琴图样式自定义 Custom seaborn violinplot
- 线宽自定义 Change line width
- 图像一般宽度自定义 Change width
# 线宽自定义 Change line width
sns.violinplot( x=df["species"], y=df["sepal_length"], linewidth=5);
# 图像一般宽度自定义 Change width
sns.violinplot( x=df["species"], y=df["sepal_length"], width=0.3);
3. 小提琴图颜色自定义 Control color of seaborn violinplot
- 使用调色板 Use a color palette
- 单种颜色 Uniform color
- 指定每个组的颜色 Specify color of each group
- 突出显示一个组 Highlight a group
# 使用调色板 Use a color palette
sns.violinplot( x=df["species"], y=df["sepal_length"], palette="Blues");
# 单种颜色 Uniform color
sns.violinplot( x=df["species"], y=df["sepal_length"], color="skyblue");
# 指定每个组的颜色 Specify color of each group
# Make a dictionary with one specific color per group:
my_pal = {"versicolor": "g", "setosa": "b", "virginica":"m"}
#plot it
sns.violinplot( x=df["species"], y=df["sepal_length"], palette=my_pal);
# 突出显示一个组 Highlight a group
# make a vector of color: red for the interesting group, blue for others:
my_pal = {species: "r" if species == "versicolor" else "b" for species in df.species.unique()}
# make the plot
sns.violinplot( x=df["species"], y=df["sepal_length"], palette=my_pal);
4. 分组小提琴图 Grouped violinplot
# 如果您有一个变量,变量有几个组和子组,您可能需要制作一个分组的小提琴图。
df_test = sns.load_dataset('tips')
# Grouped violinplot 分组
sns.violinplot(x="day", y="total_bill", hue="smoker", data=df_test, palette="Pastel1");
5. 小提琴图组的顺序设置 Control order of groups in violinplot
# plot order设置顺序就行
sns.violinplot(x='species', y='sepal_length', data=df, order=[ "versicolor", "virginica", "setosa"]);
# Find the order 或者通过设置一定的规则排序
my_order = df.groupby(by=["species"])["sepal_length"].median().iloc[::-1].index
# Give it to the violinplot
sns.violinplot(x='species', y='sepal_length', data=df, order=my_order);
6. 显示小提琴图上的观察次数 Show number of observation on violinplot
# Basic violinplot 基础小提琴图像绘制
ax = sns.violinplot(x="species", y="sepal_length", data=df)
# Calculate number of obs per group & median to position labels 计算各个样本数量
medians = df.groupby(['species'])['sepal_length'].median().values
nobs = df['species'].value_counts().values
nobs = [str(x) for x in nobs.tolist()]
nobs = ["n: " + i for i in nobs]
# Add it to the plot 加入图像
pos = range(len(nobs))
for tick,label in zip(pos,ax.get_xticklabels()):
ax.text(pos[tick], medians[tick] + 0.03, nobs[tick], horizontalalignment='center', size='x-small', color='w', weight='semibold');
[seaborn] seaborn学习笔记5-小提琴图VIOLINPLOT的更多相关文章
- GIS案例学习笔记-ArcGIS整图大图出图实例教程
GIS案例学习笔记-ArcGIS整图大图出图实例教程 联系方式:谢老师,135-4855-4328,xiexiaokui#qq.com 1. 通过出图比例尺(1:2000),地图范围测算图纸大小. 图 ...
- UML学习笔记:类图
UML学习笔记:类图 有些问题,不去解决,就永远都是问题! 类图 类图(Class Diagrame)是描述类.接口以及它们之间关系的图,用来显示系统中各个类的静态结构. 类图包含2种元素:类.接口, ...
- UML学习笔记:活动图
UML学习笔记:活动图 活动图 活动图是UML中描述系统动态行为的图之一,用于展现参与行为的类的活动或动作.在UML里,活动图很类似于流程图,但是有一些区别: 活动图着重表现系统行为,描述对象活动的顺 ...
- [seaborn] seaborn学习笔记1-箱形图Boxplot
文章目录 1 箱形图Boxplot 1. 基础箱形图绘制 Basic boxplot and input format 2. 自定义外观 Custom boxplot appearance 3. 箱型 ...
- [seaborn] seaborn学习笔记4-核密度图DENSITYPLOT
文章目录 4 核密度图Densityplot 1. 基础核密度图绘制 Basic density plot 2. 核密度图的区间控制 Control bandwidth of density plot ...
- [seaborn] seaborn学习笔记3-直方图Histogramplot
文章目录 3 直方图Histogramplot 1. 基本直方图的绘制 Basic histogram 2. 数据分布与密度信息显示 Control rug and density on seabor ...
- JS学习笔记--轮播图效果
希望通过自己的学习收获哪怕收获一点点,进步一点点都是值得的,加油吧!!! 本章知识点:index this for if else 下边我分享下通过老师教的方式写的轮播图,基础知识实现: 1.css代 ...
- 吴恩达deepLearning.ai循环神经网络RNN学习笔记_看图就懂了!!!(理论篇)
前言 目录: RNN提出的背景 - 一个问题 - 为什么不用标准神经网络 - RNN模型怎么解决这个问题 - RNN模型适用的数据特征 - RNN几种类型 RNN模型结构 - RNN block - ...
- C#学习笔记思维导图 一本书22张图
阅读的书是<21天学通C#>博客中有下载 看看总结之后的模块 全部文件 初步展示 数据存储 继承模块 暂时就这些吧 全部思维导图22张打包下载
随机推荐
- HFS局域网分享文件的神器(附下载链接)
温馨提示,下载链接在页末 前言 假如说你需要传递个学习资料给好基友,我们有许多种方式可选:硬盘媒介.网络分享等. 要是论速度,还是得拿3.0或以上的U盘来拷贝,确实神速哈哈.但是其也有局限性,比如需要 ...
- 刷完一千道java笔试题的常见题目分析
java基础刷题遇到的最常见问题 可以先看一下这位博主整理的java面试题(很详细,我看了好几遍了):https://blog.csdn.net/ThinkWon/article/details/10 ...
- 插入排序算法(Java代码实现)
其它经典排序算法:https://blog.csdn.net/weixin_43304253/article/details/121209905 插入排序算法: 思路:将数据分为已经排序好的数据和未排 ...
- 使用doctest代码测试和Sphinx自动生成文档
python代码测试并自动生成文档 Tips:两大工具:doctest--单元测试.Sphinx--自动生成文档 1.doctest doctest是python自带的一个模块.doctest有两种使 ...
- python制作一个小型翻译软件
from urllib import parse,request import requests,re,execjs,json,time 英语查词翻译 class Tencent(): def ini ...
- Java函数式编程:三、流与函数式编程
本文是Java函数式编程的最后一篇,承接上文: Java函数式编程:一.函数式接口,lambda表达式和方法引用 Java函数式编程:二.高阶函数,闭包,函数组合以及柯里化 前面都是概念和铺垫,主要讲 ...
- SpringMVC&Maven进阶
3. SpringMVC 3.1 了解SpringMVC 概述 SpringMVC技术与Servlet技术功能等同,均属于web层开发技术 学习路线 请求与响应 REST分割 SSM整合 拦截器 目标 ...
- docker+nginx 安装部署修改资源目录配置文件和容器端口信息
查看docker镜像 可以先查看docker下是否存在nginx镜像,使用如下这些命令查看: docker images: 列出所有镜像. docker images nginx: 列出所有nginx ...
- dojo 访问 VS 创建的Json文件 汉字乱码
通过VS创建了一个json文件,直接保存成了文件放到了Web根目录下. 通过dojo的dojo/request访问,返回的汉字都是乱码. 通过以下方案解决. 用记事本把josn文件打开,然后点击另存为 ...
- 【Java并发入门】03 互斥锁(上):解决原子性问题
原子性问题的源头是线程切换 Q:如果禁用 CPU 线程切换是不是就解决这个问题了? A:单核 CPU 可行,但到了多核 CPU 的时候,有可能是不同的核在处理同一个变量,即便不切换线程,也有问题. 所 ...