NumPy - 数据类型

NumPy 支持比 Python 更多种类的数值类型。 下表显示了 NumPy 中定义的不同标量数据类型。

序号 数据类型及描述
1. bool_存储为一个字节的布尔值(真或假)
2. int_默认整数,相当于 C 的long,通常为int32或int64
3. intc相当于 C 的int,通常为int32或int64
4. intp用于索引的整数,相当于 C 的size_t,通常为int32或int64
5. int8字节(-128 ~ 127)
6. int1616 位整数(-32768 ~ 32767)
7. int3232 位整数(-2147483648 ~ 2147483647)
8. int6464 位整数(-9223372036854775808 ~ 9223372036854775807)
9. uint88 位无符号整数(0 ~ 255)
10. uint1616 位无符号整数(0 ~ 65535)
11. uint3232 位无符号整数(0 ~ 4294967295)
12. uint6464 位无符号整数(0 ~ 18446744073709551615)
13. float_float64的简写
14. float16半精度浮点:符号位,5 位指数,10 位尾数
15. float32单精度浮点:符号位,8 位指数,23 位尾数
16. float64双精度浮点:符号位,11 位指数,52 位尾数
17. complex_complex128的简写
18. complex64复数,由两个 32 位浮点表示(实部和虚部)
19. complex128复数,由两个 64 位浮点表示(实部和虚部)

NumPy 数字类型是dtype(数据类型)对象的实例,每个对象具有唯一的特征。 这些类型可以是np.bool_,np.float32等。

数据类型对象 (dtype)

数据类型对象描述了对应于数组的固定内存块的解释,取决于以下方面:

  • 数据类型(整数、浮点或者 Python 对象)

  • 数据大小

  • 字节序(小端或大端)

  • 在结构化类型的情况下,字段的名称,每个字段的数据类型,和每个字段占用的内存块部分。

  • 如果数据类型是子序列,它的形状和数据类型。

字节顺序取决于数据类型的前缀<或>。<意味着编码是小端(最小有效字节存储在最小地址中)。>意味着编码是大端(最大有效字节存储在最小地址中)。

dtype可由一下语法构造:

numpy.dtype(object, align, copy)

参数为:

  • Object:被转换为数据类型的对象。

  • Align:如果为true,则向字段添加间隔,使其类似 C 的结构体。

  • Copy? 生成dtype对象的新副本,如果为flase,结果是内建数据类型对象的引用。

示例 1

# 使用数组标量类型
import numpy as np
dt = np.dtype(np.int32)
print dt

输出如下:

int32

示例 2

#int8,int16,int32,int64 可替换为等价的字符串 'i1','i2','i4',以及其他。
import numpy as np dt = np.dtype('i4')
print dt

输出如下:

int32

示例 3

# 使用端记号
import numpy as np
dt = np.dtype('>i4')
print dt

输出如下:

>i4

下面的例子展示了结构化数据类型的使用。 这里声明了字段名称和相应的标量数据类型。

示例 4

# 首先创建结构化数据类型。
import numpy as np
dt = np.dtype([('age',np.int8)])
print dt

输出如下:

[('age', 'i1')]

示例 5

# 现在将其应用于 ndarray 对象
import numpy as np dt = np.dtype([('age',np.int8)])
a = np.array([(10,),(20,),(30,)], dtype = dt)
print a

输出如下:

[(10,) (20,) (30,)]

示例 6

# 文件名称可用于访问 age 列的内容
import numpy as np dt = np.dtype([('age',np.int8)])
a = np.array([(10,),(20,),(30,)], dtype = dt)
print a['age']

输出如下:

[10 20 30]

示例 7

以下示例定义名为 student 的结构化数据类型,其中包含字符串字段name,整数字段age和浮点字段marks。 此dtype应用于ndarray对象。

import numpy as np
student = np.dtype([('name','S20'), ('age', 'i1'), ('marks', 'f4')])
print student

输出如下:

[('name', 'S20'), ('age', 'i1'), ('marks', '<f4')])

示例 8

import numpy as np 

student = np.dtype([('name','S20'),  ('age',  'i1'),  ('marks',  'f4')])
a = np.array([('abc', 21, 50),('xyz', 18, 75)], dtype = student)
print a

输出如下:

[('abc', 21, 50.0), ('xyz', 18, 75.0)]

每个内建类型都有一个唯一定义它的字符代码:

  • 'b':布尔值

  • 'i':符号整数

  • 'u':无符号整数

  • 'f':浮点

  • 'c':复数浮点

  • 'm':时间间隔

  • 'M':日期时间

  • 'O':Python 对象

  • 'S', 'a':字节串

  • 'U':Unicode

  • 'V':原始数据(void)

NumPy数据类型的更多相关文章

  1. Numpy 数据类型和基本操作

    Numpy 数据类型 bool 用一位存储的布尔类型(值为TRUE或FALSE) inti 由所在平台决定其精度的整数(一般为int32或int64) int8 整数,范围为128至127 int1 ...

  2. numpy 数据类型与 Python 原生数据类型

    查看 numpy 数据类型和 Python 原生数据类型之间的对应关系: In [51]: dict([(d, type(np.zeros(1,d).tolist()[0])) for d in (n ...

  3. 2、NumPy 数据类型

    1.NumPy 数据类型 numpy 支持的数据类型比 Python 内置的类型要多很多,基本上可以和 C 语言的数据类型对应上,其中部分类型对应为 Python 内置的类型.下表列举了常用 NumP ...

  4. Lesson3——NumPy 数据类型

    NumPy 教程目录 NumPy 数据类型 numpy 支持的数据类型比 Python 内置的类型要多很多,基本上可以和 C 语言的数据类型对应上,其中部分类型对应为 Python 内置的类型. 下表 ...

  5. Numpy 数据类型

    numpy支持的数据类型比Python内置的类型多很多,基本上可以和C语言的数据类型对应上, 其中部分类型对应为Python内置的类型.下表列举了常用的Numpy基本类型. 名称 描述 bool_ 布 ...

  6. Numpy数据类型转化astype,dtype

    1. 查看数据类型 import numpy as np arr = np.array([1,2,3,4,5]) print(arr) [1 2 3 4 5] # dtype用来查看数据类型 arr. ...

  7. 吴裕雄--天生自然Numpy库学习笔记:NumPy 数据类型

    下表列举了常用 NumPy 基本类型. 名称 描述 bool_ 布尔型数据类型(True 或者 False) int_ 默认的整数类型(类似于 C 语言中的 long,int32 或 int64) i ...

  8. numpy数据类型dtype转换

    这篇文章我们玩玩numpy的数值数据类型转换 导入numpy >>> import numpy as np 一.随便玩玩 生成一个浮点数组 >>> a = np.r ...

  9. NumPy 超详细教程(2):数据类型

    系列文章地址 NumPy 最详细教程(1):NumPy 数组 NumPy 超详细教程(2):数据类型 NumPy 超详细教程(3):ndarray 的内部机理及高级迭代 文章目录 NumPy 数据类型 ...

随机推荐

  1. ETCD使用中需要注意的问题

    我们在实际生产中使用ETCD存储元数据, 起初集群规模不大的时候元数据信息不多没有发现什么问题. 随着集群规模越来越大问题逐渐暴露了 有些实际的配置还是需要在初始化的时候就研究确定 1. --auto ...

  2. Storm 架构图

    画的丑,勉强看看吧 Nimbus我感觉他就像人的大脑一样! 当客户端给这个人发送了段信息 ,这个人的大脑就接收到这段信息,这个人不简单,是幕后大佬,一般不自己去干活,都是交给下面二当家去执行,当时这个 ...

  3. TGI指数

    TGI指数 目标人群中国具有某一特征的群体占比/总体中具有相同特征的群体的占比*标准数100

  4. js滚动显示: 滚动条置顶/底

    <script> //当聊天室的内容超出页面范围时, 如何让页面刷新后 显示最下面的内容 document.getElementByIdx ( 'chatboard').scrollTop ...

  5. python基础之类的静态方法和类方法

    一 静态方法 通常情况下,在类中定义的所有函数都是对象的绑定方法,对象再调用绑定方法时会自动将自己作为参数传递给方法的第一个参数.除此之外还有两种常见的方法:静态方法和类方法,二者是为类量身定制的,但 ...

  6. 总结! http post请求 application/x-www-form-urlencoded body体数据获取不到?

    首先,简单介绍下Http请求中Content-Type类型 类型格式:type/subtype(;parameter)? type 主类型,任意的字符串,如text,如果是*号代表所有: subtyp ...

  7. oracle入门(3)——oracle服务解释

    [本文介绍] oracle不像mysql,安装后之后一个服务,如果mysql连接不上,打开其服务就行.oracle是有多个服务,哪些服务要开,哪些服务没必要开,对新手来说未必不是一个难点.下面对ora ...

  8. 你真的会用Gson吗?Gson使用指南

    你真的会用Gson吗?Gson使用指南(一) 你真的会用Gson吗?Gson使用指南(二) 你真的会用Gson吗?Gson使用指南(三) 你真的会用Gson吗?Gson使用指南(四)

  9. mysql乱码修改character_set_server

    [mac] 1.使用任何一个客房端或者命令行查询一下编码,俺用的是MySQLWorkbench SHOW VARIABLES LIKE 'character_set_%'; 2.发现编码是charac ...

  10. 【网络编程基础】Linux下进程通信方式(共享内存,管道,消息队列,Socket)

    在网络课程中,有讲到Socket编程,对于tcp讲解的环节,为了加深理解,自己写了Linux下进程Socket通信,在学习的过程中,又接触到了其它的几种方式.记录一下. 管道通信(匿名,有名) 管道通 ...