spark(1.1) mllib 源码分析(一)-卡方检验
原创文章,转载请注明: 转载自http://www.cnblogs.com/tovin/p/4019131.html
在spark mllib 1.1版本中增加stat包,里面包含了一些统计相关的函数,本文主要分析其中的卡方检验的原理与实现:
一、基本原理
在stat包中实现了皮尔逊卡方检验,它主要包含以下两类
(1)适配度检验(Goodness of Fit test):验证一组观察值的次数分配是否异于理论上的分配。
(2)独立性检验(independence test) :验证从两个变量抽出的配对观察值组是否互相独立(例如:每次都从A国和B国各抽一个人,看他们的反应是否与国籍无关)
计算公式:
其中O表示观测值,E表示期望值
详细原理可以参考:http://zh.wikipedia.org/wiki/%E7%9A%AE%E7%88%BE%E6%A3%AE%E5%8D%A1%E6%96%B9%E6%AA%A2%E5%AE%9A
二、java api调用example
三、源码分析
1、外部api
通过Statistics类提供了4个外部接口
// Goodness of Fit test
def chiSqTest(observed: Vector, expected: Vector): ChiSqTestResult = {
ChiSqTest.chiSquared(observed, expected)
}
//Goodness of Fit test
def chiSqTest(observed: Vector): ChiSqTestResult = ChiSqTest.chiSquared(observed) //independence test
def chiSqTest(observed: Matrix): ChiSqTestResult = ChiSqTest.chiSquaredMatrix(observed)
//independence test
def chiSqTest(data: RDD[LabeledPoint]): Array[ChiSqTestResult] = {
ChiSqTest.chiSquaredFeatures(data)
}
2、Goodness of Fit test实现
这个比较简单,关键是根据(observed-expected)2/expected计算卡方值
/*
* Pearon's goodness of fit test on the input observed and expected counts/relative frequencies.
* Uniform distribution is assumed when `expected` is not passed in.
*/
def chiSquared(observed: Vector,
expected: Vector = Vectors.dense(Array[Double]()),
methodName: String = PEARSON.name): ChiSqTestResult = { // Validate input arguments
val method = methodFromString(methodName)
if (expected.size != 0 && observed.size != expected.size) {
throw new IllegalArgumentException("observed and expected must be of the same size.")
}
val size = observed.size
if (size > 1000) {
logWarning("Chi-squared approximation may not be accurate due to low expected frequencies "
+ s" as a result of a large number of categories: $size.")
}
val obsArr = observed.toArray
// 如果expected值没有设置,默认取1.0 / size
val expArr = if (expected.size == 0) Array.tabulate(size)(_ => 1.0 / size) else expected.toArray / 如果expected、observed值都必须要大于1
if (!obsArr.forall(_ >= 0.0)) {
throw new IllegalArgumentException("Negative entries disallowed in the observed vector.")
}
if (expected.size != 0 && ! expArr.forall(_ >= 0.0)) {
throw new IllegalArgumentException("Negative entries disallowed in the expected vector.")
} // Determine the scaling factor for expected
val obsSum = obsArr.sum
val expSum = if (expected.size == 0.0) 1.0 else expArr.sum
val scale = if (math.abs(obsSum - expSum) < 1e-7) 1.0 else obsSum / expSum // compute chi-squared statistic
val statistic = obsArr.zip(expArr).foldLeft(0.0) { case (stat, (obs, exp)) =>
if (exp == 0.0) {
if (obs == 0.0) {
throw new IllegalArgumentException("Chi-squared statistic undefined for input vectors due"
+ " to 0.0 values in both observed and expected.")
} else {
return new ChiSqTestResult(0.0, size - 1, Double.PositiveInfinity, PEARSON.name,
NullHypothesis.goodnessOfFit.toString)
}
}
// 计算(observed-expected)2/expected
if (scale == 1.0) {
stat + method.chiSqFunc(obs, exp)
} else {
stat + method.chiSqFunc(obs, exp * scale)
}
}
val df = size - 1
val pValue = chiSquareComplemented(df, statistic)
new ChiSqTestResult(pValue, df, statistic, PEARSON.name, NullHypothesis.goodnessOfFit.toString)
}
3、independence test实现
先通过下面的公式计算expected值,矩阵共有 r 行 c 列

然后根据(observed-expected)2/expected计算卡方值
/*
* Pearon's independence test on the input contingency matrix.
* TODO: optimize for SparseMatrix when it becomes supported.
*/
def chiSquaredMatrix(counts: Matrix, methodName:String = PEARSON.name): ChiSqTestResult = {
val method = methodFromString(methodName)
val numRows = counts.numRows
val numCols = counts.numCols // get row and column sums
val colSums = new Array[Double](numCols)
val rowSums = new Array[Double](numRows)
val colMajorArr = counts.toArray
var i = 0
while (i < colMajorArr.size) {
val elem = colMajorArr(i)
if (elem < 0.0) {
throw new IllegalArgumentException("Contingency table cannot contain negative entries.")
}
colSums(i / numRows) += elem
rowSums(i % numRows) += elem
i += 1
}
val total = colSums.sum // second pass to collect statistic
var statistic = 0.0
var j = 0
while (j < colMajorArr.size) {
val col = j / numRows
val colSum = colSums(col)
if (colSum == 0.0) {
throw new IllegalArgumentException("Chi-squared statistic undefined for input matrix due to"
+ s"0 sum in column [$col].")
}
val row = j % numRows
val rowSum = rowSums(row)
if (rowSum == 0.0) {
throw new IllegalArgumentException("Chi-squared statistic undefined for input matrix due to"
+ s"0 sum in row [$row].")
}
val expected = colSum * rowSum / total
statistic += method.chiSqFunc(colMajorArr(j), expected)
j += 1
}
val df = (numCols - 1) * (numRows - 1)
val pValue = chiSquareComplemented(df, statistic)
new ChiSqTestResult(pValue, df, statistic, methodName, NullHypothesis.independence.toString)
}
原创文章,转载请注明: 转载自http://www.cnblogs.com/tovin/p/4019131.html
spark(1.1) mllib 源码分析(一)-卡方检验的更多相关文章
- spark(1.1) mllib 源码分析(二)-相关系数
原创文章,转载请注明: 转载自http://www.cnblogs.com/tovin/p/4024733.html 在spark mllib 1.1版本中增加stat包,里面包含了一些统计相关的函数 ...
- spark(1.1) mllib 源码分析(三)-朴素贝叶斯
原创文章,转载请注明: 转载自http://www.cnblogs.com/tovin/p/4042467.html 本文主要以mllib 1.1版本为基础,分析朴素贝叶斯的基本原理与源码 一.基本原 ...
- spark(1.1) mllib 源码分析(三)-决策树
本文主要以mllib 1.1版本为基础,分析决策树的基本原理与源码 一.基本原理 二.源码分析 1.决策树构造 指定决策树训练数据集与策略(Strategy)通过train函数就能得到决策树模型Dec ...
- spark的存储系统--BlockManager源码分析
spark的存储系统--BlockManager源码分析 根据之前的一系列分析,我们对spark作业从创建到调度分发,到执行,最后结果回传driver的过程有了一个大概的了解.但是在分析源码的过程中也 ...
- 【Spark篇】---Spark中资源和任务调度源码分析与资源配置参数应用
一.前述 Spark中资源调度是一个非常核心的模块,尤其对于我们提交参数来说,需要具体到某些配置,所以提交配置的参数于源码一一对应,掌握此节对于Spark在任务执行过程中的资源分配会更上一层楼.由于源 ...
- Spark 1.6.1 源码分析
由于gitbook网速不好,所以复制自https://zx150842.gitbooks.io/spark-1-6-1-source-code/content/,非原创,纯属搬运工,若作者要求,可删除 ...
- Spark Mllib源码分析
1. Param Spark ML使用一个自定义的Map(ParmaMap类型),其实该类内部使用了mutable.Map容器来存储数据. 如下所示其定义: Class ParamMap privat ...
- 《深入理解Spark-核心思想与源码分析》(一)总体规划和第一章环境准备
<深入理解Spark 核心思想与源码分析> 耿嘉安著 本书共计486页,计划每天读书20页,计划25天完成. 2018-12-20 1-20页 凡事豫则立,不豫则废:言前定,则不跲:事 ...
- Spark MLlib - Decision Tree源码分析
http://spark.apache.org/docs/latest/mllib-decision-tree.html 以决策树作为开始,因为简单,而且也比较容易用到,当前的boosting或ran ...
随机推荐
- 多媒体封装格式详解---MP4
MP4文件格式详解——结构概述 http://blog.csdn.net/pirateleo/article/details/7061452 一.基本概念 1. 文件,由许多Box和FullBox组成 ...
- UITableView Scroll to top 手动设置tableview 滚动到 顶部
UITableView Scroll to top 手动设置tableview 滚动到 顶部 [mainTableView scrollRectToVisible:CGRectMake(0,0,1,1 ...
- mysql导入数据乱码的解决
#mysql -uroot -p -hlocalhost --default-character-set=utf8; mysql>use db_name; mysql>source /ho ...
- PHP过滤器
这里介绍的过滤器包括: 1.filter_input 2.filter_input_array 3.filter_var 4.filter_var_array 5.filter_has_var 一.查 ...
- 在进程中执行新代码 execl、execle、execlp、execv、execve和execvp函数
摘要:本文主要讲述怎样在进程中执行新代码,以及exec系列函数的基本用法. 在进程中执行新代码 用函数fork创建子进程后,假设希望在当前子进程中运行新的程序,能够调用exec函数运行还有一个程序.当 ...
- mysql主从复制原理及实现
一.主从复制原理 利用MySQL提供的Replication,其实就是Slave从Master获取Binary log文件,然后再本地镜像的执行日志中记录的操作.由于主从复制的过程是异步的,因此Sla ...
- python打包exe文件-ImportError: No module named 'queue'
我之前遇到的一个错误就是 File "site-packages\urllib3\packages\six.py", line 92, in __get__ File " ...
- SQL Server 创建和使用索引
创建索引: (1)在SQL Server Management Studio中,选择并右击要创建索引的表,从弹出菜单中选择“设计”,打开表设计器.右键单击表设计器,从弹出菜单中选择“索引/键”命令,打 ...
- Maven实战(一)搭建Nexus伺服器
在搭建伺服器之前我们先要说明一下为什么要搭建伺服器以及伺服器的作用是什么.在进行分布式开发中maven工具的使用可以极大的提高我们管理项目颗粒的效率,既然是管理颗粒那总得有地方存放才行,而伺服器扮演的 ...
- AES_CBC_PKCS5Padding 加密
在项目中需要对一些关键信息进行传输,但又不能是明文,所以采用此种方式进行加密,另一端再进行解密. AES: 算法 CBC: 模式 使用CBC模式,需要一个向量iv,可增加加密算法的强度 PKCS5 ...
