[POI2017]Reprezentacje ró?nicowe

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 141  Solved: 67
[Submit][Status][Discuss]

Description

给定一个数列a:
当n<=2时,a[n]=n
当n>2,且n是奇数时,a[n]=2a[n-1]
当n>2,且n是偶数时,a[n]=a[n-1]+r[n-1]
其中r[n-1]=mex(|a[i]-a[j]|)(1<=i<=j<=n-1),mex{S}表示最小的不在S集合里面的非负整数。
数列a的前若干项依次为:1,2,4,8,16,21,42,51,102,112,224,235,470,486,972,990,1980。
可以证明,对于任意正整数x,只存在唯一一对整数(p,q)满足x=a[p]-a[q],定义为repr(x)。
比如repr(17)=(6,3),repr(18)=(16,15)。
现有n个询问,每次给定一个正整数x,请求出repr(x)。

Input

第一行包含一个正整数n(1<=n<=10^5)。
接下来n行,每行一个正整数x(1<=x<=10^9),表示一个询问。

Output

输出n行,每行两个正整数p,q,依次回答每个询问。

Sample Input

2
17
18

Sample Output

6 3
16 15

HINT

 

Source

鸣谢Claris上传

暴力跑出来,就log个数,然后随便乱搞,就可以了,枚举就好了,map存一下之类。

 #include<cstring>
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<map>
#include<map> #define N 10007
#define it map<int,pair<int,int> >::iterator
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-;ch=getchar();}
while(isdigit(ch)){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
} map<int,pair<int,int> >s;
int Q,n,cnt;
int a[N],b[N]; int main()
{
a[]=,a[]=;
s[]=make_pair(,);
for(n=;;n++)
{
if(n&) a[n]=a[n-]*;
else for(int j=;;j++) if(!s.count(j)) { a[n]=a[n-]+j; break; }
for(int j=;j<n;j++) s[a[n]-a[j]]=make_pair(n,j);
if((!(n&))&&a[n]>1e9) break;
}
for(it l=s.begin();l!=s.end();l++)
b[++cnt]=l->first;
Q=read();
while(Q--)
{
int x=read();
it l=s.find(x);
if(l!=s.end())
printf("%d %d\n",(*l).second.first,(*l).second.second);
else
{
int y=lower_bound(b+,b+cnt+,x)-b-;
printf("%d %d\n",n+(x-y)*,n+(x-y)*-);
}
}
}

bzoj 4725 [POI2017]Reprezentacje ró?nicowe 暴力的更多相关文章

  1. BZOJ 4725: [POI2017]Reprezentacje ró?nicowe

    Description 一个数列. \(a_1=1,a_2=2\) 当 \(n>2\) 时 \[a_n = \{  \begin {matrix} 2a_{n-1},\text{n is an ...

  2. BZOJ4725: [POI2017]Reprezentacje ró?nicowe

    $n \leq 1e5$,$x \leq 1e9$. 1e9呵呵,暴力处理$a_n$的前几项直到1e9.然后处理出差的数列,每次在这里面找,找得到就回答,找不到,那有贡献的只有$a_i-a_{i-1} ...

  3. BZOJ 3339 & 莫队+"所谓的暴力"

    题意: 给一段数字序列,求一段区间内未出现的最小自然数. SOL: 框架显然用莫队.因为它兹瓷离线. 然而在统计上我打了线段树...用&维护的结点...400w的线段树...然后二分查找... ...

  4. BZOJ 4727: [POI2017]Turysta

    4727: [POI2017]Turysta Time Limit: 20 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 117  Solved ...

  5. bzoj 4724 [POI2017]Podzielno 二分+模拟

    [POI2017]Podzielno Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 364  Solved: 160[Submit][Status][ ...

  6. BZOJ - 4066 KD树 范围计数 暴力重构

    题意:单点更新,大矩阵(\(n*n,n≤10^5\))求和 二维的KD树能使最坏情况不高于\(O(N\sqrt{N})\) 核心在于query时判断当前子树维护的区间是否有交集/当前子节点是否在块中, ...

  7. BZOJ 4726: [POI2017]Sabota?

    4726: [POI2017]Sabota? Time Limit: 20 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 301  Solved ...

  8. BZOJ 4723: [POI2017]Flappy Bird

    Description 从一个点到一条直线,每次纵坐标只能增加或减少1,有些位置有障碍,求最少增加步数. Sol 贪心. 或许是贪心吧...反正在可到达的范围内,纵坐标尽量小... 做的时候维护一下两 ...

  9. BZOJ 4726: [POI2017]Sabota? 树形dp

    4726: [POI2017]Sabota? 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4726 Description 某个公司有n ...

随机推荐

  1. 同台服务器 部署多个tomcat 需要做的修改

    需要修改以下加粗部分: 1:访问端口 8080->8081 2:shutdown 端口 8005->8015 3: AJP端口 8001->8010 <?xml version ...

  2. Juice账号

    zhangxiaocong69 zxc6545398 15657167502 区块链账户: 0x00680404766965143796a0a070835c3cdf9a4a50

  3. Python中的list

    list的创建 1 字面量 >>>L = [1, 2, 3] [1, 2, 3] 2 通过iterable可迭代对象,比如str对象,range对象,map对象 >>&g ...

  4. 2d命令行小游戏源码

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...

  5. C++计算器项目的初始部分(第三次作业)

    C++计算器项目的初始部分 项目源文件地址:calculator 项目信息: * 项目名称:Calculator * 项目实现: * 对四则运算表达式进行拆解 * 对拆解的表达式进行简单的错误判断 * ...

  6. LintCode-159.寻找旋转排序数组中的最小值

    寻找旋转排序数组中的最小值 假设一个旋转排序的数组其起始位置是未知的(比如0 1 2 4 5 6 7 可能变成是4 5 6 7 0 1 2). 你需要找到其中最小的元素. 你可以假设数组中不存在重复的 ...

  7. Linux命令之查看cpu个数_核数_内存总数

    http://blog.csdn.net/cgwcgw_/article/details/10000053 cpu个数 cat /proc/cpuinfo | grep "physical ...

  8. Go语言【第五篇】:Go条件语句

    Go语言条件 条件语句需要开发者通过指定一个或多个条件,并通过测试条件是否为true来决定是否执行指定语句,并在条件为false的情况再执行另外的语句.下图展示了程序语言中条件语句的结构: Go语言提 ...

  9. BZOJ4754 JSOI2016独特的树叶(哈希)

    判断两棵无根树是否同构只需要把重心提作根哈希即可.由于只添加了一个叶子,重心的位置几乎不发生偏移,所以直接把两棵树的重心提起来,逐层找哈希值不同且对应的两子树即可.被一个普及组子问题卡一年. #inc ...

  10. Bellman—Ford算法思想

    ---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G ...