斜率优化第一题! HDU3507 | 单调队列优化DP
放一手原题
题解:
第一次写(抄)斜率优化,心里还是有点小激动的。讲一下怎么实现的!
首先我们可以考虑一个朴素的dp:DP[i]表示前i个数字的最少花费,显然我们有一个转移方程
DP[i]=min{DP[j]+M+(sum[i]-sum[j])^2}
但是N^2肯定会超时,我们考虑优化他
假设有k<j<i,如果令j对i的贡献比k好
显然我们有这样的式子
DP[j]+M+(sum[i]-sum[j])^2 < DP[k]+M+(sum[i]-sum[j])^2
把平方打开之后移项
可以得到
((DP[j]+sum[j]^2)- (DP[k]+sum[k]^2) ) / 2*(sum[j]-sum[k]) < sum[i]
可以把这个式子看成(yj - yk)/(xj - xk) 这样就得到了一个类似斜率的式子!
有了这些结论有什么用呢?
令G[i,j]表示刚刚的斜率式,依然有k<j<i
当j的决策比k优秀的时候,则满足G[i,j]>G[j,k]
我们可以用单调队列维护解集,利用斜率判断元素的入队和出队,这样可以使时间复杂度降低到O(n)了
#include<cstdio>
#include<algorithm>
#include<cstring>
#define N 500005
using namespace std;
int dp[N],q[N],sum[N],l,r,n,m;
int GetDp(int i,int j)
{
return dp[j]+m+(sum[i]-sum[j])*(sum[i]-sum[j]);
}
int GetUp(int j,int k)
{
return dp[j]+sum[j]*sum[j]-(dp[k]+sum[k]*sum[k]);
}
int GetDown(int j,int k)
{
return *(sum[j]-sum[k]);
}
int main()
{
while (scanf("%d%d",&n,&m)!=EOF)
{
for (int i=,x;i<=n;i++)
scanf("%d",&x),sum[i]=sum[i-]+x;
l=r=;
q[r++]=;
for (int i=;i<=n;i++)
{
while (l+<r && GetUp(q[l+],q[l])<=sum[i]*GetDown(q[l+],q[l]))
l++;
dp[i]=GetDp(i,q[l]);
while (l+<r && GetUp(i,q[r-])*GetDown(q[r-],q[r-])<=GetUp(q[r-],q[r-])*GetDown(i,q[r-]))
r--;
q[r++]=i;
}
printf("%d\n",dp[n]);
}
return ;
}
斜率优化第一题! HDU3507 | 单调队列优化DP的更多相关文章
- 洛谷P3975 跳房子 [DP,单调队列优化,二分答案]
题目传送门 跳房子 题目描述 跳房子,也叫跳飞机,是一种世界性的儿童游戏,也是中国民间传统的体育游戏之一. 跳房子的游戏规则如下: 在地面上确定一个起点,然后在起点右侧画 n 个格子,这些格子都在同一 ...
- BestCoder Round #89 02单调队列优化dp
1.BestCoder Round #89 2.总结:4个题,只能做A.B,全都靠hack上分.. 01 HDU 5944 水 1.题意:一个字符串,求有多少组字符y,r,x的下标能组成等比数列 ...
- Codeforces 1304F1/F2 Animal Observation(单调队列优化 dp)
easy 题目链接 & hard 题目链接 给出一张 \(n \times m\) 的矩阵,每个格子上面有一个数,你要在每行选出一个点 \((i,t)\),并覆盖左上角为 \((i,t)\), ...
- [小明打联盟][斜率/单调队列 优化dp][背包]
链接:https://ac.nowcoder.com/acm/problem/14553来源:牛客网 题目描述 小明很喜欢打游戏,现在已知一个新英雄即将推出,他同样拥有四个技能,其中三个小技能的释放时 ...
- 【刷题笔记】DP优化-单调队列优化
单调队列优化 眼界极窄的ZZ之前甚至不会单调队列--(好丢人啊) 单调队列优化的常见情景: 转移可以转化成只需要确定一个维度,而且这个维度的取值范围在某个区间里 修剪草坪 这个题学长讲的好像是另外一个 ...
- 动态规划专题(四)——单调队列优化DP
前言 单调队列优化\(DP\)应该还算是比较简单容易理解的吧,像它的升级版斜率优化\(DP\)就显得复杂了许多. 基本式子 单调队列优化\(DP\)的一般式子其实也非常简单: \[f_i=max_{j ...
- tyvj1305 最大子序和 【单调队列优化dp】
描述 输入一个长度为n的整数序列,从中找出一段不超过M的连续子序列,使得整个序列的和最大. 例如 1,-3,5,1,-2,3 当m=4时,S=5+1-2+3=7 当m=2或m=3时,S=5+1=6 输 ...
- P3957 跳房子(二分答案+单调队列优化DP)
题目链接:https://www.luogu.org/contestnew/show/4468 题目大意:跳房子,也叫跳飞机,是一种世界性的儿童游戏,也是中国民间传统的体育游戏之一. 跳房子的游戏规则 ...
- 【Luogu】P2569股票交易(单调队列优化DP)
题目链接 首先这题可以肯定的是朴素DP秒出.然后单调队列优化因为没接触过所以不会emmm 而且脑补没补出来 坐等四月省选倒数第一emmm 心态爆炸,偷懒放题解链接 #include<cstdio ...
随机推荐
- 卷积神经网络CNN在自然语言处理中的应用
卷积神经网络(Convolution Neural Network, CNN)在数字图像处理领域取得了巨大的成功,从而掀起了深度学习在自然语言处理领域(Natural Language Process ...
- 数据库路由中间件MyCat - 背景篇(2)
此文已由作者张镐薪授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. MyCat的前世今生 如前文所说,Amoeba.Cobar.MyCat等属于同宗一脉.若Amoeba能继续下 ...
- spark 相关
Spark为什么会比mapreduce快? 1.Spark减少了中间过程的磁盘读写,数据很多时候不需要落地,从而提升了效率. 2.Spark基于内存的读写,减少了磁盘IO.node数据交互的通信时间. ...
- Linux命令应用大词典-第23章 进程和服务管理
23.1 ps:报告当前进程的快照 23.2 top:显示当前正在运行的进程 23.3 pgrep:按名称和其他属性查找进程 23.4 pidof:查找正在运行的进程的进程号 23.5 pstree: ...
- hexo部署失败如何解决
- Switches and Lamps(思维)
You are given n switches and m lamps. The i-th switch turns on some subset of the lamps. This inform ...
- 课堂练习之找数字0-N中“1”出现的次数
一.题目与要求 题目:给定一个十进制的正整数,写下从1开始,到N的所有整数,然后数一下其中出现“1”的个数. 要求:1.写一个函数 f(N) ,返回1 到 N 之间出现的“1”的个数.例如 f(12) ...
- 算法与数据结构实验题 6.4 Summary
★实验任务 可怜的 Bibi 丢了好几台手机以后,看谁都像是小偷,他已经在小本本上记 下了他认为的各个地点的小偷数量. 现在我们将 Bibi 的家附近的地形抽象成一棵有根树.每个地点都是树上的 一个节 ...
- 第二次作业(1001.A+B Format (20))
代码文件及题目描写已放至此 一开始看题目的时候有点没看懂,要求把数分组是什么意思.如果只是单纯的a+b的话是不可能的,所以关于这一点犹豫了很久.本来以为是指把a,b,以及它们的和c各建一个数组,但只输 ...
- LintCode-12.带最小值操作的栈
带最小值操作的栈 实现一个带有取最小值min方法的栈,min方法将返回当前栈中的最小值. 你实现的栈将支持push,pop 和 min 操作,所有操作要求都在O(1)时间内完成. 注意事项 如果堆栈中 ...