In modern society, each person has his own friends. Since all the people are very busy, they communicate with each other only by phone. You can assume that people A can keep in touch with people B, only if 
1. A knows B’s phone number, or 
2. A knows people C’s phone number and C can keep in touch with B. 
It’s assured that if people A knows people B’s number, B will also know A’s number.

Sometimes, someone may meet something bad which makes him lose touch with all the others. For example, he may lose his phone number book and change his phone number at the same time.

In this problem, you will know the relations between every two among N people. To make it easy, we number these N people by 1,2,…,N. Given two special people with the number S and T, when some people meet bad things, S may lose touch with T. Your job is to compute the minimal number of people that can make this situation happen. It is supposed that bad thing will never happen on S or T. 
Input 
The first line of the input contains three integers N (2<=N<=200), S and T ( 1 <= S, T <= N , and S is not equal to T).Each of the following N lines contains N integers. If i knows j’s number, then the j-th number in the (i+1)-th line will be 1, otherwise the number will be 0.

You can assume that the number of 1s will not exceed 5000 in the input. 
Output 
If there is no way to make A lose touch with B, print “NO ANSWER!” in a single line. Otherwise, the first line contains a single number t, which is the minimal number you have got, and if t is not zero, the second line is needed, which contains t integers in ascending order that indicate the number of people who meet bad things. The integers are separated by a single space.

If there is more than one solution, we give every solution a score, and output the solution with the minimal score. We can compute the score of a solution in the following way: assume a solution is A1, A2, …, At (1 <= A1 < A2 <…< At <=N ), the score will be (A1-1)*N^t+(A2-1)*N^(t-1)+…+(At-1)*N. The input will assure that there won’t be two solutions with the minimal score.

题目大意:目标人物T和S只要能间接联络到对方就算可以联络,如果T通过A和S联系,如果A换号码了,就切断了与T和S的联系,T和S就无法联系了,现在让我们找出最小要几个人(T和S不能发生事故)发生事故可以使S和T切断联系。

简单来说就是切断网络流导致源点到汇点的流量为0就行,不过这题要切断的是点,所以需要把一个点拆成两个点,分别为x和x+n,x到x+n间连一条容量为1的边,然后所有入边连到x,出边从x+n发出,这样一来只要切断x到x+n间的那条边,这个点就不会有任何流量流过。初次求最大流的最大流量就是有几条通路可以使S和T保持联络,我们依次枚举所有点i拆成的i和i+n之间的边,将其容量修改为0,然后重新计算最大流(要清除边的flow),如果最大流减小了,则这个点切断会影响联络。

以上内容来自   https://blog.csdn.net/hsj970319/article/details/62416798

#include <cstdio>
#include <cstring>
#include <queue>
#include <cmath>
#include <algorithm>
#include <set>
#include <iostream>
#include <map>
#include <stack>
#include <string>
#include <vector>
#define pi acos(-1.0)
#define eps 1e-6
#define fi first
#define se second
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define bug printf("******")
#define mem(a,b) memset(a,b,sizeof(a))
#define fuck(x) cout<<"["<<x<<"]"<<endl
#define f(a) a*a
#define sf(n) scanf("%d", &n)
#define sff(a,b) scanf("%d %d", &a, &b)
#define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c)
#define pf printf
#define FRE(i,a,b) for(i = a; i <= b; i++)
#define FREE(i,a,b) for(i = a; i >= b; i--)
#define FRL(i,a,b) for(i = a; i < b; i++)
#define FRLL(i,a,b) for(i = a; i > b; i--)
#define FIN freopen("in.txt","r",stdin)
#define lowbit(x) x&-x
#pragma comment (linker,"/STACK:102400000,102400000")
using namespace std;
const int maxn = ;
typedef long long LL;
const int MX = ;
const int MXE = * MX * MX;
const LL INFLL = 0x3f3f3f3f3f3f3f3fLL;
const int INF = 0x3f3f3f;
int tot, num, s, t;
int head[MX];
struct Edge {
int v, nxt;
LL w;
} edge[]; void init() {
memset (head, -, sizeof (head) );
tot = ;
} void add (int u, int v, LL w) {
edge[tot].v = v;
edge[tot].w = w;
edge[tot].nxt = head[u];
head[u] = tot++;
edge[tot].v = u;
edge[tot].w = ;
edge[tot].nxt = head[v];
head[v] = tot++;
} int d[MX], vis[MX], gap[MX];
void bfs() {
memset (d, , sizeof (d) );
memset (gap, , sizeof (gap) );
memset (vis, , sizeof (vis) );
queue<int>q;
q.push (t);
vis[t] = ;
while (!q.empty() ) {
int u = q.front();
q.pop();
for (int i = head[u]; ~i; i = edge[i].nxt) {
int v = edge[i].v;
if (!vis[v]) {
d[v] = d[u] + ;
gap[d[v]]++;
q.push (v);
vis[v] = ;
}
}
}
} int last[MX];
LL dfs (int u, LL f) {
if (u == t) return f;
LL sap = ;
for (int i = last[u]; ~i; i = edge[i].nxt) {
int v = edge[i].v;
if (edge[i].w > && d[u] == d[v] + ) {
last[u] = i;
LL tmp = dfs (v, min (f - sap, edge[i].w) );
edge[i].w -= tmp;
edge[i ^ ].w += tmp;
sap += tmp;
if (sap == f) return sap;
}
}
if (d[s] >= num) return sap;
if (! (--gap[d[u]]) ) d[s] = num;
++gap[++d[u]];
last[u] = head[u];
return sap;
} LL solve (int st, int ed, int n) {
LL flow = ;
num = n;
s = st;
t = ed;
bfs();
memcpy (last, head, sizeof (head) );
while (d[s] < num) flow += dfs (s, INFLL);
return flow;
}
int n, sp, tp, x, cnt[], mp[][];
void build() {
init();
for (int i = ; i <= n ; i++) {
if (!cnt[i]) add(i, i + n, );
for (int j = ; j <= n ; j++) {
if (mp[i][j] && i != j ) add(i + n, j, INF);
}
}
}
int main() {
while(~scanf("%d%d%d", &n, &sp, &tp)) {
int flag = ;
memset(cnt, , sizeof(cnt));
for (int i = ; i <= n ; i++) add(i, i + n, );
for (int i = ; i <= n ; i++) {
for (int j = ; j <= n ; j++) {
scanf("%d", &mp[i][j]);
if (mp[i][j] && ((i == sp && j == tp) || (i == tp && j == sp)))flag = ;
}
}
if (flag) {
printf("NO ANSWER!\n");
continue;
}
build();
int temp = (int)(solve(sp + n, tp, * n));
printf("%d\n", temp);
vector<int>path;
path.clear();
for (int i = ; i <= n ; i++) {
if (i == sp || i == tp ) continue;
cnt[i] = ;
build();
if (temp > (int)(solve(sp + n, tp, * n))) temp--, path.push_back(i);
else cnt[i] = ;
if (temp <= ) break;
}
for (int i = ; i < path.size() ; i++)
printf("%d%c", path[i], i == path.size() - ? '\n' : ' ');
}
return ;
}

Friendship POJ - 1815 基本建图的更多相关文章

  1. poj 3648 2-SAT建图+topsort输出结果

    其实2-SAT类型题目的类型比较明确,基本模型差不多是对于n组对称的点,通过给出的限制条件建图连边,然后通过缩点和判断冲突来解决问题.要注意的是在topsort输出结果的时候,缩点后建图需要反向连边, ...

  2. poj 3683 2-sat建图+拓扑排序输出结果

    发现建图的方法各有不同,前面一题连边和这一题连边建图的点就不同,感觉这题的建图方案更好. 题意:给出每个婚礼的2个主持时间,每个婚礼的可能能会冲突,输出方案. 思路:n个婚礼,2*n个点,每组点是对称 ...

  3. POJ 1149 PIGS 建图,最大流

    题意: 你m个猪圈以及每个猪圈里原来有多少头猪,先后给你n个人,每个人能打开某一些猪圈并且他们最多想买Ki头猪,在每一个人买完后能将打开的猪圈中的猪顺意分配在这次打开猪圈里,在下一个人来之前 已打开的 ...

  4. poj 3281 最大流+建图

    很巧妙的思想 转自:http://www.cnblogs.com/kuangbin/archive/2012/08/21/2649850.html 本题能够想到用最大流做,那真的是太绝了.建模的方法很 ...

  5. POJ 3687 Labeling Balls 逆向建图,拓扑排序

    题目链接: http://poj.org/problem?id=3687 要逆向建图,输入的时候要判重边,找入度为0的点的时候要从大到小循环,尽量让编号大的先入栈,输出的时候注意按编号的顺序输出重量, ...

  6. poj 1149 Pigs 网络流-最大流 建图的题目(明天更新)-已更新

    题目大意:是有M个猪圈,N个顾客,顾客要买猪,神奇的是顾客有一些猪圈的钥匙而主人MIRKO却没有钥匙,多么神奇?顾客可以在打开的猪圈购买任意数量的猪,只要猪圈里有足够数量的猪.而且当顾客打开猪圈后mi ...

  7. poj 3281 Dining 网络流-最大流-建图的题

    题意很简单:JOHN是一个农场主养了一些奶牛,神奇的是这些个奶牛有不同的品味,只喜欢吃某些食物,喝某些饮料,傻傻的John做了很多食物和饮料,但她不知道可以最多喂饱多少牛,(喂饱当然是有吃有喝才会饱) ...

  8. (匹配 二维建图) Antenna Placement --POJ --3020

    链接: http://poj.org/problem?id=3020 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=82834#probl ...

  9. POJ 1384 Intervals (区间差分约束,根据不等式建图,然后跑spfa)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1384 Intervals Time Limit: 10000/5000 MS (Java/Others ...

随机推荐

  1. python中出现ascii编码问题的解决办法

    一劳永逸,一次性全盘解决的办法 环境变量中去设置 以centos 7为例: vim /etc/profile export PYTHONIOENCODING=utf-8 source /etc/pro ...

  2. flask源码走读

    Flask-Origin 源码版本 一直想好好理一下flask的实现,这个项目有Flask 0.1版本源码并加了注解,挺清晰明了的,我在其基础上完成了对Werkzeug的理解部分,大家如果想深入学习的 ...

  3. 在几份docx文档中里查找某个值

    import docx, os def readDocx(fileName): doc = docx.Document(fileName) content = '\n'.join([para.text ...

  4. opencv-学习笔记(3)

    opencv-学习笔记(3) 这章讲了 图像加法 opencv测试效率 IPYTHON测试效率 图像加法 cv2.add() 要求,两图片必须大小类型相同 然后是图像混合cv2.addWeighted ...

  5. Ubuntu16.04安装truffle时的一些错误

    1.使用truffle时出现 Error: /usr/bin/env: node: 没有那个文件或目录 1.如果是用sudo apt-get install nodejs命令安装的nodejs, ub ...

  6. vue.js学习之better-scroll封装的轮播图初始化失败

    vue.js学习之better-scroll封装的轮播图初始化失败 问题一:slider组件初始化失败 原因:页面异步获取数据很慢,导致slider初始化之后,数据还未获取到,导致图片还未加载 解决方 ...

  7. 直接管理内存——new和delete

    一.运算符new 1. 使用new动态分配对象 在自由空间分配的内存是无名的,故new无法为其分配的对象命名,而是返回一个指向该对象的指针 int *pi = new int; //pi指向一个动态分 ...

  8. Internet Secure

    key Secret key(密钥):ues the same key to Encryption and decryption(symmetric-key)对称加密,需要绝对安全的空间来传递key ...

  9. java — 设计模式

    设计模式(Design pattern)是一套被反复使用.多数人知晓的.经过分类编目的.代码设计经验的总结.使用设计模式是为了可重用代码.让代码更容易被他人理解.保证代码可靠性. 一.设计模式的分类 ...

  10. 3dContactPointAnnotationTool开发日志(十四)

      貌似每次让用户手动输入文件路径太不人道了,于是参考Unity 实用教程 之 调用系统窗口选择文件或路径增加了让用户浏览文件的功能,点击输入框旁边的+就可以找到文件并加载进来:   貌似调整位置再计 ...