【题解】Atcoder AGC#16 E-Poor Turkeys
%拜!颜神怒A此题,像我这样的渣渣只能看看题解度日╭(╯^╰)╮在这里把两种做法都记录一下吧~
题解做法:可以考虑单独的一只鸡 u 能否存活。首先我们将 u 加入到集合S。然后我们按照时间倒序往回推,如果在时间 t 的时候发现有 u 和 v 同时被抉择,为了保证 u 的存活我们只能杀掉 v,也就是说在 t - 1的时刻 v 必须存活。这时我们将 v 加入到集合 S 中,再继续进行这个过程。如果在某个时刻我们发现 u 和 v 同时被抉择,可 u 和 v 都已经在集合中出现过了(要求在这个时刻一并存活),这样显然是非法的。所以可以判定 u 没有存活的可能。
如果一只鸡 u 能够存活,我们把这个过程中获得的 S 集合称作 \(S_{u}\) 。u 和 v 能够共存的充要条件即为 u 和 v 均有存活的可能,且 \(S_{u}\) 和 \(S_{v}\) 两个集合不存在交集。为什么呢?因为一只鸡在 t 时刻出现在了 S 集合中,说明它将在 t 时刻被杀掉。如果两个集合中 x 出现的时间不同,那么出现了冲突;但它们又不可能在同一个时间出现,因为一个时间节点只有唯一的一个抉择,反推回去也必然都是一样的,但开始的节点一个是 u,一个是 v,所以不可能。得证。
代码:
#include <bits/stdc++.h>
using namespace std;
#define maxn 405
#define maxm 100500
int n, m, x[maxm], y[maxm], mark[maxn];
int ans, S[maxn][maxn]; int read()
{
int x = , k = ;
char c; c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} int main()
{
n = read(), m = read();
for(int i = ; i <= m; i ++) x[i] = read(), y[i] = read();
for(int i = ; i <= n; i ++)
{
memset(mark, , sizeof(mark));
mark[i] = ; S[i][++ S[i][]] = i;
for(int j = m; j >= ; j --)
{
if(mark[x[j]] && mark[y[j]]) { S[i][] = -; break; }
if(mark[x[j]]) mark[y[j]] = ;
else if(mark[y[j]]) mark[x[j]] = ;
}
if(S[i][] == -) continue;
for(int j = ; j <= n; j ++)
if(mark[j]) S[i][] ++, S[i][S[i][]] = j;
} for(int i = ; i <= n; i ++)
for(int j = i + ; j <= n; j ++)
{
if(S[i][] == - || S[j][] == -) continue;
memset(mark, , sizeof(mark)); bool flag = ;
for(int k = ; k <= S[i][]; k ++) mark[S[i][k]] = ;
for(int k = ; k <= S[j][]; k ++)
if(mark[S[j][k]]) { flag = ; break; }
if(flag) ans ++;
}
printf("%d\n", ans);
return ;
}
下面是颜神的解法(并没有代码...)也非常的妙,而且复杂度比题解还低……可以考虑建出一张图,在这张图上面所有有连边的鸡均无法共存来获得答案。那么如何建出这张图?一个人选择了 u 和 v 这两只鸡,那么这两只鸡是一定不可能共存的。假设我们在 t - 1 时刻建出的图满足在 t - 1 时刻及之前出现的所有抉择所限制不能共存的鸡均有连边,那么考虑加入t时刻的抉择之后会对这张图产生什么影响。
考虑 u 和 v 的抉择,会使哪些原本可以和 u 共存的鸡不能再和 u 共存?
如果图中的一只鸡 x 与 u 没有连边,也与 v 没有连边,那么它与 u 的生死无关;
如果一只鸡 x 与 v 有连边,而与 u 没有连边,说明 u 和 x 不能共存,我们添加一条从 u 到 x 的边。因为 x 与 v 不能共存,所以若 x 存活,v 一定死亡。那么新的 u,v 边一定会导致 u 的死亡;若 x 死亡,那么 u 可能依然存活,也可能已经死亡;但在这两种情况下,x 都不能与 u 共存。对于 v 我们也是一样的添边。
最后检查一下哪些节点是可以共存的即可。
【题解】Atcoder AGC#16 E-Poor Turkeys的更多相关文章
- [题解] Atcoder AGC 005 F Many Easy Problems NTT,组合数学
题目 观察当k固定时答案是什么.先假设每个节点对答案的贡献都是\(\binom{n}{k}\),然后再减掉某个点没有贡献的选点方案数.对于一个节点i,它没有贡献的方案数显然就是所有k个节点都选在i连出 ...
- AGC 16 D - XOR Replace
AGC 16 D - XOR Replace 附上attack(自为风月马前卒爷) 的题解 Problem Statement There is a sequence of length N: a=( ...
- [AGC016E]Poor Turkeys
[AGC016E]Poor Turkeys 题目大意: 有\(n(n\le400)\)只火鸡,编号为\(1\)到\(n\),有\(m(m\le10^5)\)个人,每人指定了两只火鸡\(x\)和\(y\ ...
- Atcoder AGC016 E Poor Turkeys
比赛的时候口胡这道题口胡了一年,看完题解被教做人 题意:有n只火鸡,m个猎人按序来杀火鸡,从自己预先选的两只中杀一只,问有多少火鸡对可以同时存活 考虑对于每一只火鸡i,按时间逆序维护一个最小的集合Si ...
- AtCoder Grand Contest 016 E - Poor Turkeys
题目传送门:https://agc016.contest.atcoder.jp/tasks/agc016_e 题目大意: 有\(N\)只火鸡,现有\(M\)个人,每个人指定了两只火鸡\(x,y\),每 ...
- 【题解】Atcoder AGC#01 E-BBQ Hard
计数题萌萌哒~ 这道题其实就是统计 \(\sum_{i=1}^{n}\sum_{j=i+1}^{n}C\binom{a[i] + a[j]}{a[i] + a[j] + b[i] + b[j]}\) ...
- 【题解】Atcoder AGC#03 E-Sequential operations on Sequence
仙题膜拜系列...首先我们可以发现:如果在截取了一段大的区间之后再截取一段小的区间,显然是没有什么用的.所以我们可以将操作序列变成单调递增的序列. 然后怎么考虑呢?启示:不一定要考虑每一个数字出现的次 ...
- 【做题记录】AtCoder AGC做题记录
做一下AtCoder的AGC锻炼一下思维吧 目前已做题数: 75 总共题数: 239 每一场比赛后面的字母是做完的题,括号里是写完题解的题 AGC001: ABCDEF (DEF) AGC002: A ...
- AtCoder AGC #2 Virtual Participation
在知乎上听zzx大佬说AGC练智商...于是试了一下 A.Range Product 给$a$,$b$,求$\prod^{b}_{i=a}i$是正数,负数还是$0$ ...不写了 B.Box and ...
随机推荐
- ogg的安装配置 配置双向同步(含DDL)
第一部分 先配置单向同步(含DDL) 一 源端安装GoldenGate 创建用户 创建目录 mkdir -p /opt/ogg chmod -R 777 /opt/ogg chown -R oracl ...
- JMeter性能测试的基础知识和个人理解
JMeter性能测试的基础知识和个人理解 1. JMeter的简介 JMeter是Apache组织开发的开源项目,设计之初是用于做性能测试的,同时它在实现对各种接口的调用方面做的比较成熟,因此,常 ...
- ASP.NET数据库连接
启动Visual Studio,新建一个web工程 点开工程目录下web.config文件, 找到节点,新增数据库配置 aspx界面新建一个button和一个文本框用于测试数据库连接, 其中butto ...
- apache+php开发环境搭建步骤
apache 卸载apache服务命令:sc delete apache 1.在D盘下面新建文件夹php7 2.解压apache到php7文件夹下面 3.修改配置文件 4.安装apache服务C:\w ...
- 记录---Testin上新手测试用例设计实战---碎乐3.2.0
平台上给的版本是碎乐3.12版的,但是平台上给的安装包下载不了,所以加群咨询之后给出了直接去手机应用商店下载搜索到的版本的对策.所以就那应用商店中找到的3.2.0版本来设计测试用例.因为任务中没有给出 ...
- Request对象及常用方法
Object getAttribute(String name) 获得name的属性,若不存在,则返回null Enumeration getAttributeNames() 返回一个枚举类型的包含r ...
- 【json提取器】- 提取数据的方法
json 提取器的使用 方法 json 提取器 提取的结果 我用调试取样器进行查看
- 变量不加 var 声明——掉进坑中,无法自拔!
整整一下午,都在解决 window.onresize 中方法丢失不执行的问题!姿势固定在电脑前,颈椎病都犯了. 前些日子与大家分享了一下关于 防止jquery $(window).resize()多次 ...
- [Clr via C#读书笔记]Cp11事件
Cp11事件 类型之所以提供事件通知功能,是因为类型维护了一个已登记方法的列表,事件发生后,类型将通知列表登记的所有方法: 事件模型建立在委托的基础上.委托是调用回调方法的一种类型安全的方式. 设计事 ...
- centos环境配置(nginx,node.js,mysql)
1.安装 Install GCC and Development Tools on a CentOS yum group install "Development Tools" n ...